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Complex Numbers

INTRODUCTION

Complex numbers are an extension of the real numbers designed to solve equations
that have no solutions within the realm of real numbers. The history of mathematics
shows that man has been developing and enlarging his concept of number according
to the saying that “Necessity is the mother of invention”, In the remote past they started
with the set ol counting numbers and invented, by stages, the negalive numbers,
rational numbers, irrational numbers ete. Since square of a positive as well as negative
number is a positive number, the square root ol a negative number does not exist in the
realm of real numbers.  Therefore, square roots of negative numbers were given no
attention for centuries together, However, recently, properties of numbers involving
square roots of negative numbers have also been discussed in detail and such numbers
have been found useful and have been applied in many branches of pure, applied,
financial and computational mathematics,

1.1 Complex Numbers

The numbers of the form 7z =a +ih where a,be & and i= n'f_l . are called complex
numbers. For cxample, 3 +44, 2 ;:’, 7-2i ete. are complex numbers and the set of
all complex numbers is denoted by

1.1.1 Recognition of Real and Imaginary Parts

Let vs start with considering the following equation: Note: 0|

4l =0 = x=-1 = -"'_i‘-’"__] Every real number is a complex
J=1 does not belong to the set of real numbers, We, ~ Humber wilh § as ils imaginary
therefore, for convenience call it imaginary number '
and denote it by § (read as iota).
In the complex number z = a +ib , a is called real part and b is called imaginary part
of the complex number. For convenient, real part is denoted by Re z and imaginary part
by Im z of a complex number z. For example, ifz = 3 + 4i, then

Rez=3and Imz=4.

The product of 4 non-zero real number and ¢ is also an imaginary number and is

; 11 ; )
written as 1. Thus 2i, -, \E:',— : i are all imaginary numbers,
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Conjugate Complex Numbers: Let == a+ibbe a complex number, then a — ib is
called the complex conjugate of @ + b, Tt 15 denoted by Z . Thus 5— &4/ 15 complex

comjugate of 5 —4i and 2 30 is complex m e e e
conjugate of 2 +37
1.1.2 Operations on Complex Numbers
With a view to develop algebra ol complex numbers, we state a few delinitions.
The symbols a, b, ¢, 4, k, where used, represent real numbers.
(1} Addition: {a+ik)+{c+id)={a+c)+ilb+d)
(i) kla+ib)y=ka—+ikb
(111} Subtraction: {a -+ i)y —{c+id) = (a + i+ [—(c +id )]
=a+ib+{~c—id)=(a-c)+i(b—d)
(iv) Multiplication: {a + ib)c + id )= ac + fad + ibc + Pbd = (ac— bdy + ilad + be)
1.1.3 Complex Numbers as Ordered Pairs of Real Mhumbers
We can define complex numbers also by using ordered pairs.
Let € be the set of ordered pairs belonging to 75 x & which are subject to the
following propertics:
(1) (. b=le.dissa=vanb=d
(i) (a.Btie.di=latc.b+td)
(iii) (a. b)c, d)=(ac—bd, ad + bc)
Then C is called the set of complex numbers, It is easy 10 see that
(@, ) —(c.d)=(a—c, b—d)
(iv) Ifkis any real number, then &{a.b) = (fa, kb)
Propertics (1), (1) and (111) respectively detine equality, sum and difference of two
complex numbers. Property (iv) defines the product of a real number and a complex
number,

Example 1: Find the sum, difference and product of the complex numbers (8, 9) and
(3, —6)
Solution: Sum=(8+5,9-6)=(13, 3)
Difference = (8 —5, 9 —(—6))=(5, 15)
Product = (8- 5—(9)(—6), 9-5+(-6I(ED
— {40+ 54,45 —48) — (94, =3)
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1.1.4 Properties of the Fundamental Operations on Complex Numbers
It can be easily verified that the set C satisfies all the field axioms i.e., it possesses the
properties of real numbers.
By way of explanation of some points we observe as follows:
{1} The additive identity in Cis (0, 0.
(ii) Ewvery complex number (a. b) has the additive inverse (—a, =) e,

(a, b) + (~a, —&)=(0,0)

{1i1) The multiplicative identity 1s (1, 0) 1.¢.. E.
(a, B}(1,0)=(a1-b0, b1 +a0)=(q b).  The set € of complex
= (1, 0){a, b) numbers does not satisfy the

(iv) Every non-zero complex number f{i.e., number ~ OTUer axioms. In ﬁmﬂt.mﬂm
not cqual to (0,03} has a mulaphicabve inverse. Eu'::l igﬂsiﬂim Epee
The multiplicative inverse of {a, b) is P &

or less than the other.
a -
{az b at + b J
(e, b) [—rﬂ'ﬂ.‘ : '—,_IE:—.. ] = {1, 0}, the identity element
a - +h a +h
" a —h
= ' ] £ '.v'b
Lfr‘ +h a4 }[& )

vy o, DY [{e, d) L 0e, f) ] (o, Die.d) L (a, b)e f)

Example 2: If z, —{4, 2} and =z, —{3_.— 1], then find =
£

Solution: Given z, =.[.4__ 2). & ={3,— 1}
3 _ M _4+2
z, (3.-1) 3-i
Multiply the numerator and denominator by the complex conjugate of z, =3 7.
z A+ 4+2f'x3+f
3—i 3—i 347§
_ D+ (0 + 003+ (200 12+ 40+ 60+ 27

Mo,

-
oy
P

{3}2 . {n"j: 9 -F
12410i-2 104100 . . .,
= = =l+i s ==
9—(—1I) 10
Phs: e fpd
=
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1.1.5 Argand Diagram
Every complex number will be represented by one and only one point of the coordinate plane
and every point of the plane will represent one and only one complex number. The
components of the complex number will be the ey

coordinates of the point representing it. In this ot
representation the x-axis is called the real axis and the Sehh 3t AR N
v-axis 15 called the imaginary axis. The coordinate o 14 .
plane itself is called the complex plane or z—plane, The 1
figure representing one or more complex numbers on Ye———— —— 3%
the complex plane is called an Argand diagram. The AR _]_?.- iRt
Arpgand diagram is a way of representing one or more oy - .
complex numbers om the complex plane. Points on the 4 34 2, —2)
x=axis represent real numbers whereas the points on the Lt

Wy

V=axis represent imaginary numbers.
In an Argand diagram, the complex number x+fy is uniquely represented by the order
pair (x, ¥). In Figure (i), the complex numbers 3+ 2/, -2+ 2i, -3 —2iand 2 — 2i
correspond to the order pairs (3, 20, (-2, 23, (-3, —2) and (2, —2) respectively have been
represented geometrically by the point 4, B, Cand D,

Modulus of Complex Number: The real number

Aix, ¥
Jx'+ 7 is called the modulus of the complex number é 3.
x+iy and it is denoted by x+i.In Figure (ii), |04 o
x S
represent the modulus of x+iv. In other words, the < v T Y

maodulus of a complex number is the distance from the
arigin to the point representing the number,
(142

Example 3: If = — then evaluate [Z] S
—1 3

(1+2) 1+4i+4" 344 24i —6-3i+Ri+di’
- . ; :

Solution: = = ® = —
2-i 2-i 2=i 2+i 2 =
_ —6+5i-4 =10+3i
=) 5
=% r==2+]
Talang conjugale
z=—2—i=-2+i
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0.

and 7= |-2-i|=y(-2) +(-1)’ = A1

= |E|=\|"§
V" EXERCISE 1.1 _d

Simplify the following:
PI1I i

-1
(i i’ (i) " (iiiy (=) " (iv) (=1)°
Prove that z =z iff z is real.
For ze C . show that
. z+z : i E=E ;
i =Relz ii =Im{ z
M 717 =Re(2) @) 57 =In(2)
2 = . 1 =
{111} |z| =z Z (iy] —=—
Z z[
Find the multiplicative inverse of each of the following numbers:
(i) (4,7 (i) (~v2.—5) (i) (1,0)
Separale into real and imaginary parts (write as a simple complex number):
BTy s i oo R
1) uy —- {111 —_— )
{ 445 ( ' 1+ { 4-3
If z, =2+1,z, =3-21,z, =1+ 3i then express -'--';':-'- in the form of a+ib.
It z, =2+ Tiand z. =5+ 3i. the evaluate the tollowing:
() [2z-4z] (i) Pz+2z) (i) -7z, +2z| (i) [(5+2,))

1.2 Equality of Two Complex Numbers

The two complex numbers z, =a+0f and z, = ¢+ di are said to be equal iff their real

and imaginary parts are equal 1.e., a+ M =c+di<>a=candb=d.

Example 4: If (3+2()0{x+iv)=5+12i , where x, ye R, then find the values of x and y.
Solution: Given that (3+20(x+i) =5+12

= Jx+3+2ix+ 2t =5+ 12§
= (3x 2+ (X +3)i=5+12i
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Comparing real and imaginary part, we have

3x—2y=35 wali}
2r+ 3y=12 1
Multiplying equation {1) by 3 and equation (ii) by 2, we have
Or—fy - 15
dr + ay =24
Add the equations
Oy —6y+4x+6p=15+24
13x =39
¥=3
Substitute x =3 in equation (1), we have
9(3) Gy=15
by =12
y=2

Thus, x=3,y=2

1.2.1 Square Root of a Complex Number
The square root of a complex number is another complex number that, when squared,
give the original complex number.
Let w=p+giis a square root of a complex number z = x+Jy, where pg.x, v R,
then w= \'I'f_ .1}, taking square on both sides, we get
wl =z
(ptigFf=x+iy
ot + 2pgi — g* = x + iy
Equating real and imaginary part, we have
x=p*—g* .L11)
y=212pg ...(n1)
We know that { p*+ g% =(p* ¢°) + 4p°g°
Substitute x= p* —g*., 1 = 2pg in the above equation, we get

(FPrqP=x+y
s gt =Nty V)

From equation (ii) and (iv), we have x = p’ —g and p” +¢° =+/x" + " . Solving for
the values g and g, we have

o el
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From equation (iii): v =2 pg , thus we have
e« y =0, if pand g have the same sign
» v it p and g have opposite sign
e y=0itp=Oorg=10

Therelore, the square rool of the complex number = = x+év 15 given by
P o2
\||I_ m [Jq!l’ +].- +x |I_}|J_1,|_II +E_].-' —X J
2 ¥

or Yyz==

|z.;x .- |f.vi If!:tx J -..(v), where |z|=4/x" + ¥* = 0 is modulus of z.
.‘1

cquation (v) 15 the required formula for square root of complex numbers,

Example 5: Find the square root of complex ¥
number 3 + 12¢ and also represent the square ot
roots on an Argand diagram. T 342
i
Solution: Let x+ W =53+12( 2T b
'I_
::".T_qﬂn.d_}r’ 12}{:' ..'.::I [l 1 ! 1 ] Il ! [l E
R 2 SHE G I 1) R
lz| = [5+124=+5" +12% =13, I+ ’
Applying the square rool formula lor complex e |
numbers, we gel T

e ][RR 2 II]3 ‘ g 7
Iz
[\IEIN"_} (3+27)

Thus, the square root of the complex number 5 — 127 are 3 + 27 and -3 — 27 are shown
in adjacent figure.

F~ EXERCISE 1.2 _§

. Find the values of x and v in each of the following;
(1) x+=iv+2-3i=i(5-i}3+4i)
) @+l - =02 3} -5+ 50 i3/5)

(i) ——+ 2 =a+5

241 3-i
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2. Ifz==13+24i and z,=x+ yi. find the values of x and y such that

= =27+15i

e |

L

Find the value of x and y 1l
-2-51
(1+34)°

(i) (x+y) =25+600 (i) (x+i) =64+48 (i) xiy=

If z, =24+3i and z, =1-a , lind the value of & such that lm(zz,)=7
5. Hzy=x+pandz,=a+ ki findx, », 2 and b such that z, +z, = 10 + 4/ and
2= =0+
6. Showthat V2. 5eC, 52 =172,
I'ind the square root of the [ollowing complex numbers:
(i 724 (i) 8 6 (i) 15 36i fv) 119+ 1204
B. Find the square root of 13— 20+/3i and represent them on an Argand diagram
9 Find the value of x and v if (=7+x+iv)+(—1-50=i(l1-i)
10. Find the value of xand v if (3-2iHx+ )+ 3=H11-1)-H
1. Find the values of u and viF:
(i) (w+iv) =20+20 (i) (w+iv) =48-10i

12, Iz, =445 and z, =a —2{, Iind the value of @ such that Re{z z )= 20

1.2 Complex Polynomials as a Product of Linear Factors

A complex polyvnomial A(z) 15 a polynomial function of the complex varable z with
complex coefficients, It is expressed in the general form as

e Ty i el
P(z)=a:z"+a_z +..+taz+a,

Where a,.@, ,..0.0are complex numbers (¢, =20), and n=0is an integer
representing the degree of the polynomial.

For examples Rlzy=(1-1)z + 3, Kl{z)=(5 - #r'}zz +(2 =iz + (3—-44)and
B(z)= (2-i)z+22% +(5+3) are the examples of linear, quadratic and cubic
complex polynomials respectively. If n =0, then P(z) becomes a constant polynomial.
A fundamental property of complex polynomials s that they can always be factored
into a product of linear faciors.

According to the Fundamental theorem of aleebra, a polynomial of degree n 2 | has
exactly n roots in complex numbers system C.
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A corollary to this theorem states that any polynomial P(z) of degree # can be factored
completely into a constant & and # linear factor over C in the form

Pizi=alz-z,)z-z,).0z—-z2) (1)
where z,,z,,..., 2, arc complex roots of the polynomial. Once we know the roots of a
polynomial equation, we can apply equation (1) to factored the polyvnomial Fz) into s
lincar factors. Specifically, it 2 and z, are roots of the polynomial equation P(z), then
the equation must be P{z)=(z—-z Nz-z,). For examples, the polynomial
Pix)=x"+4 consists of real coefficient has no real roots, so it cannot be factored into
linear polynomials with real coefficients. However, if we considered as a complex
polynomial P(z)=z" +4, we can easily be factored into two linear factors as

2+ d=(z+20)z-2i)
where 2i and —2/ are the complex roots of z° +4=0
If Pz} is a polynomial function, the values of z that satisfy P{z) = 0 are called the zeros of
the function £(z) and roots of the polynomial eguation H(z) = 0

Example 6: Factorize the polynomial Plz) =22+ (1-i)z—1i.
Solution: P{z]::3+{1—r'}::—:'

=z 42—k

=z{z+1)—i(z+1)

=[{z+1)z—1i)

Example 7: Factorize the polynomial P(z)=z"—4iz+12
Solution: P(z) =" —4iz + 12
=7 4~ (-1}
= —4iz—i"12 A
=7 _jhz+i2z - 12
2z 6Nt 2z 6D
= {z - bi)iz + 2i)
Example 8: Factorize the polynomial P(z) =2+ (1 +i )" + iz,
Solution: P(z) =2 (1 + N2 +i=z
=zl + (1 + iz +1]
=z +z+iz+i]
=z[z{z+ 1)+ iz + 1]]
[zt 1)z 1 )]

ziz | 1z | i)y are lingar factors,
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The Rational Eool Theorem s a mathematical tool used to find all possible rational roots of a
polynomial equation with integer coelflicients, According 10 ratienal root theerem:

If a polynomial Pix)=a x"+a_x"' +..+ax+u has integer coefficients, then every rational
T % (in simplesl lerms) splisles:
{1} 715 a fuctor of the constant em ay. (3] g 15 a factor of the leading coefficient a,

Example 9: Factorize the + polynomial P(z)=2* — 32+ 2+ 5,

Solution: According to rational root theorem the possible root of the equation are =1

and £5. On checking, we see that  z=—1 is the root of the polynomial P(z) because
P-1)=(-1y =3(-1r +(-1)+5=0.

S0z + 11s a factor of the P(z). Using synthetic division

Therefore, = =3z"+ z45=(z+1)(2* - 4z+5) ki)

Next find the factors of z° —4z 45 using quadratic formula
22 —4z+5=0, hete a=1,b=-4,¢=35

—(—4) A J(—4) — 4(1)(5) _41416-20 _ a4 _ 4132

(1) 2 2 2
= z=24+
The quadratic factors arez:—4:+5=|{2—[2+f}}[:—[2—f’}]=|'L::—2—e';||{2—2+a']
Substitutes in equation (1), we have the
2 =328+ z+5=(z+1}z—2-i}z—2+{)

1.3.1 Solution of Quadratic Equations by Completing the Square

As we learned in previous classes, completing the square is a powerful and systematic
method for solving quadratic equations. This technique involves rewriting a quadratic
equation in the form ax *+ bx + ¢ = into a perfect square trinomial, which can then be
solved by taking the square root of both sides. This method is especially valuable when
the quadratic equation does not factor easily. By completing the square, we can solve
any quadratic equation, even those with rrational or complex roots, making it a more
effective technique in algebra.

Example 10: Solve the equation 222 12z + 50 =0 by completing square method and
hence express it as a product of its linear factors.
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Solution: 222 —12z+50=10
Dividing both sides by 2
F—bz+25=0
—= N =—25
Add 37 on hoth sides
2-2X3e+3F=-25+3

(z—3F =-16
=% z—31=+./-16
= z=3+4

Therefore, z =3+ 4ior z = 3—4iare the required complex roots.

Using the corollary of Fundamental theorem of Algebra the equation can be factorized
using the ronts 3 +4iand 3 44 as:

26— 122+ 50 =2(" - 62+ 25)=2( z = (3+ 4 )z - (3-4i)) = 2{ == 3- 4 )z -3+ 4i)

Hence, 2z° -12z+30=2(z-3-4i){z -3+ 4)
V" EXERCISE 1.3

. Factorize the following:
(i) o +4b° (i) 9a°+ 166 (i) 30+ 37 (iv) 14407 + 2257
(v) #—2iz—1 (vi) 22 +6z+13  (vii) 2+4z+5 (vii) 227 —222+65

2. Factorize the following polynomial mto its linear factors:
(1) = +8 (iiy Z+27 (i) -2+ 162-32 (ii}) z'+21z° =100
(iv) =16 (iil) z*+32° -4  (iv) Z*+52°+6 (v Z+T72-144

3. Find the roots of ="+ 7z" - 144 =0 and hence express it as a product of linear

factors.

4, Solve the following complex quadratic equation by completing square method:

(i) 2z° =3z+4=0 (i) =" —hz+30=0 (iii} 3z°—I8z+50=0
(i) 2 +4z+13=0 (iD 2z°+46z+9=0 (i) 3z -5z4+7=0
5. Solve the following equations;
(n 2:'-32=0 (n) 3z-243z =0 () 5z°- 5z =0
(iv) = =52 +z-5=0 (v) 4z'-25421=0 (vi) 22+ 4241=0

6.  Find a polynommal of degree 3 with zeros 3, —2i, 2i and satisfying P{1)=20.

7. Find a polynommal of degree 4 wath zeros 248, —2i, 1, —1, and sahshing
P(2) = 240,

B. Find a polynomial of degree 4 with zeros 4, 4, | + i, | — i and satisfying
P(21=72



Complex Numbers ~<> Mathematics m

1.4 Three Cube Roots of Unity E

Let x be a cube root of unity We know that the rmbers contuining
3 i are called Complex numbers. So
x={1)*

. ¥ =] —I+-ﬁim —I—-J';a'am i
= e e
= G-DEtxtl) =0 .
Either x=1=0= x=1
or r+x+1=0
A__—I:m IRETTEY
2 2

_li;ﬁl (v 1‘II'__]= i)

o

Thus, the three cube roots of unity are:
—J4f3i - —1—~f3i
2 2
1.4.1 Properties of Cube Roots of Unity
(i) Each complex cube rool of unity is square of the other

3 ] ;
IIT.“G = m, then IT@= £,

_1+4f3i

and ifT = ¢, ther

— ¥ =

1.

Ir

1+3 .,
1Tﬂ—m" [er is read as omega)

(ii) The sum of all the three cube roots of unity is zero ie, | — @+ @ =0
(iii) The product of all the three cube roots of unity is unity ie. oo =o' =1
1.5 Four Fourth Roots of Unity

Let x be the fourth root of unity

x= (1)

= x=]
N *—1=0
= {F-Di+1)=0
=X F-1=0 = =1 = r»==1

and ¥+ 1-0 =X "—1=x—+i

Hence [our fourth rools ol unity are: 1. -1, §,—i.
T ——
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1.5.1 Properties of tour Fourth Roots of Unity
We have found that the four fourth roots of unity are: 1, -1, +7,—i
(1)  Sum ol all the four fourth roots of unity is zero
1+ (- +i+(=}=0
(i1} The real fourth roots of unity are additive inverses of cach other
| and | are the real fourth roots ot unityand | +( 1}=0={ 1)+ 1
{111} Both the imaginary fourth roots of unity are conjugate of each other
i and — are imaginary fourth roots of unity, which are obviously conjugates
of each other.
(iv) Product of all the fourth roots of unity 1s —1 Le., 13 (=1) = {x (—)=—1
Example 11: Prove that:(x* + 37} = (x + 1)z + en}x + ar'y)
Solution: BLILS = (x | v)(x | av)(x ar)
=fx+yx+(o+ o pet+ o)
={x+ iy —xp+y) =x"+y (v er=l.w+ew=-1'=LHS
Hence proved.

V" EXERCISE 1.4 _

. Find the three cube roots of:

(i) 8§ (i) 8 (i) 27 (iv) 64 (v —623
2. Evaluale:
(i) M+w—aw) (i) o™+’ +1 (i) (1+@-a')Nl-—o+ao)
7 . 27
' IT _3 _I_ _3 B ]
) | == | +|—=—= () A+=3) 4 (1=
2 . 2
3. Show that; (i X -y =x—yix—oyix—ao'y)
(i) C+y'+7—3nz-—(x+y+ziet oyt aziet+ ey + o)
(i) (1 +a)(l + e W1 + W1 + &% ... 2n factors = |
4. Ifeisarootofx +x+ 1 =0, show that its other root is & and hence prove that
ar =1
_ : e R R T
5. Prove that complex cube roots of -1 are ———and — ——— and hence prove
Pt T Iday - =
that L. \: =—2. Prove that (-1++/-3)" F(=1—-w=3) =18
6. If @ is a cube root of unity, form an equation whose roots are 2w and 2ar,
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1.4 Polar Coordinates System

Polar coordmates are often more convenient than
Cartesian  coordinates in situations  involving
circular or rotational symmetry, or when a
problem depends on distance from a fixed
point and angle relative to a reference direction.
Just as the Cartesian coordinate sysiem uscs an

ordered pair (x, ) to describe the position of a
point, the polar coordinate system determines
the position of a point using a directed
distance » from a fixed origin O (called the pole)
and an angle ¢ that the line connecting the origin
io the point makes wiih the polar axis (lvpically
alipgned with the positive x-axis).

In polar coordinate system the location of a point P can be described by polar
coordinates in the form (r, &), where r and # are real numbers.

¥ Rectangular cooedinate

o

-

While ris tyvpically considered non-negative {r = 0), it
is also possible for r to be negative (r < (), The value
of r changes depending on its sign, and this affeets the
position of the point in the plane,

When # = 0, the angle & is the measure of any angle in
standard position whose terminal side lies along the
line connecting the origin to the point . measured
counter clockwise from the polar axis (positive x=axis).

y
For example, the polar coordinates (5,% j represent a

point 3 units away from pole at an angle of 7y radians.

i Polar coordinate
Pir, B
-
B
[ Polar axis
3
T 1
Hs.%)
b
ke
&
1
n
&
o Polar axis
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When » < 0, the angle ¢ is the measure of any angle
in standard position whose terminal side lies along
the line comnecting the origm to the point 2, hut the
point {is  located Irlunits in the opposite f/_ \'ﬂﬁ
direction (i.c., &+ ) from the polar axis (positive x- -
axis), For example, the polar coordinates | ;
s . . 0|-s, %J
'—S,E/lrcpn:bcm a point 5 units away from the

\

y iz o T ;o
pole, but in the direction of —+ 7 = — radians.

m (-5, 4] and (3, Sad) represent the same point in the plane -
1.4.1 Polar Coordinate System ot a Complex Number
Consider the adjeining diagram representing the 4 |

complex number =z =x+iv. From the diagram, X
: ., A
we see that x=rcosfand y=rsind, where 4

Alr,8)

¥=rsing
r=|z| is modulus and & 15 called an argument o

of 7. r=reosfl M ¥
Hence ¥ riv=rcosl b irsing i)

where r=|z|=4/x'+»" and #=tan ' (x£0)

Equation (1) 1s called the polar form of the +
complex number = .

[ HE We can write cosé - isind =cisd

Example 12: Express the complex number |+ i3 in polar form.

Solution: Step-T1 : Putrcos#=1 and recos = NE}

Step—11 : ' = (1) +[V3f b ———
- E=14+3=4 - Ii':'—ﬂ*_v??[!thenﬂég
— S S -
|“-'I'§ - . . Ifx=ﬂ,}“=ﬂthenﬂ=—5
Step-1I1: & =tan T=lan +3= 60 e fx=0.y—0then B is undefined
Thus 1+ i+/3 = 2 cos 60° +7 2xin 60°
Principal Argument: The principal argument B of a complex number z = a + hi is
the angle between the positive real axis and the line joining (@, A) lo the origin
A
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in the Argand plane,
argz=48 =1;an"[ L ]
T

It is denoted by are. It is a single, specific value of the argument, tvpically chosen
within a standard range: arg z € (—r, 7).
1.3.3 Operations on Complex Numbers in Polar Form
Addition and Subtraction of Complex number in Polar form
Let z =rn{cosf +isinf Jand z,=r(cosf, +isind, )be two complex number in
polar form. The addition and subtraction of two numbers can be computed simply as

2+, =1 [:cn_aﬁ'l + i.qin.ﬁ"l]-s- J‘:{C{!ﬂﬂz +isin#, )
and z,—z, =r{cosd) +isind, )—r,(cosd, +isind, )
Multiplication of Complex number in Polar form
Let =z, =r{cosd +isind Jand z,=r(cosd, +isin?, )be two complex number in

polar form. The product of two complex numbers can be derived by multiplying them
direcily and simplifving

2,2, = 1| cosd +isind, ) 1, (cos, +isind, )

S A {cua g cosd, +icosd sinf), +ising cosd, +i' sind, sinﬂz]

L=k [[_mt‘?l cosfl, —sin, sind, ) + E{cnﬁf?l sinfd, +siné cosf, } ot =—1
A A [uu.«;(ﬁ', +6. )+isin(6 +8,) (Using trigonometric identities)
Thus, multiplyving two complex numbers in polar form involves multiplyving their
moduli and summing their arguments 1.e., arg(z -z, )=arg(z )+ arg(z,)

; e A Ir .. 3
Example 13: Find the product of :{cas%ﬂ'sm%} and 4[1:4:157? +r5:n?f].
1 =
i i A
Solution: Let z, = 5| cos £+I'l-1in'E ]Eﬂd Z,= 4“053_32‘_'_1_35”_5 |
6 6 ? 7 3 |
Here, r; =5and &, = % while r, =4and &, = 'T:_

Substitute this value in the product formula
22, =N [uﬂa[é‘, +&, ) +isin(#, +d, )

‘7 3 (7 3| S
=S54 cuﬁ| E+—:IT)+!'L~1'|I!LL£+— 'I =2[I{|::|1:ﬁ-;5—';IiT +{':-:~:i|:]i
L6 2 6 2, 3 CE

. . 5 . S5t )
Thus, the regquired product 1s 2{}[1:05TE+ {310 % )

=
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Division of Complex Number in Polar Form

Let -2, —.li['m:-;ﬁi'l +;!'5im‘5'|]an4:1 z, = n(cosd, +ising, |be two complex number in
polar form. The formula for division of two complex numbers in polar formg, be
derived by ralionalizing the denominator.

z,  rlcosd +isind, )

z, n(cost, +isind, )

-

= rfcost ~ising ) (cosd, —isind, [

1= :
z, r(cosé, +ising,) (cosf, —isind, )

Multiply and divide the equation
by conjugate of cos &, + fsind,

(cosd cosd, +sind sind, )+ i(sind, cosdd, —cosd, sind, )

B
T 2 3
z, K cos” @, +sin'd,

Z LA 3 ] ; : i i cid

—L= —'[uus{ﬁl —6, J+isin(6, —#,) | (Using trigonometric identities)

:1 r-? .

Thus, the modulus of the division of two complex numbers equals the quotient of
their moduli, while the arguments of the quotient is the difference between their
arguments,

Thus, when dividing two complex numbers, the modulus of the result is the ratio of

their moduli, and the argument of the result is the difference between their arguments

.., arg(i |=ur;;r|iz,]| arg(z,)
\ %2 )

Example 14: Divide E(cus.’r—ﬂﬂ'sinﬁﬁby E[L‘ur‘»[—£]+{'h‘-in[ —H—]W
7 6 & F 2 24

! i TJ 3 3 ) i}
Solution: Let z, = E: uus?i+i51ni Jand z, == n:m-.:[—E + a'sm[—'E] ]
7 [ &) 2 2

; 3

3
Here, r, =%, t, =?—H,rz=g andf L

2

== " cos(6, -8, ) +isin(0, -8,) |
oy odE =

2 5 T [ JI'}] ey ?1'“‘.]

=Zx | ppgf —o— | == +:51n|——L——

7 3 L6 2 \ 6 24

10 Ax s ; R,
s E[METF +i 51|1T ] 15 the required polar form of division of two complex
E_, 3 B
number.
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Example 15: If z = x + iy, then write the equation [3z—i|= |3§+T| in term of x and y.

Solution: Given 532—i|—|3;+'?| ...{1}

3z =i|=[3x+i)—i|=x+i3y-1)|= JExF = Gy-1)°

SEI?":SJ:IE.E_MT:S.: v+ T = RBx T+Hi(=30) = 3+ TV +(=3p)°
[3z+7] =] =] =+

Substitutes these values in (1)

JBXF + 3y —107 =3x+ T + (=300
Taking square on both sides
(B3xY +(3v=17 =03x+7V +(=3v)°
O =" — v+ 1 =9 +42x + 49 + 9~

= fp+ 1 =42x + 49
— fhy =42y + 48
or p=—Tr—8

The equation y = —7x—8 represents a straight line in the complex plane.

Example 16: Show that { x+ 2]3+y: =8/if arg[: - ? ]r % for z=x+iy.
I‘z_ I

:+EE_.I+.§F+E_XI5[_|.?I2}_.::I,E{_],-12]KJ. i(y-2)
2= x+iy-2 x+i(y-2) x+i(y-2) x—i(y-2)

Solutinn:

: o (Pt piyes &
— - - — "
z=2i  P+(y-2) F+O-2 -
z+2i
Ag m'gf L d-]=3_}r
vZz—2i 4
_f 4]-. -
La(y=2F | 3
= tan™" w o oy oo Wy
o i I P-4 4
¥ +(y-2)
= 4:"’:_'{-"':"'.1:3—4) = X+dx+y'=4

Completing the square for 1, we have
[.T—Z}! +y =8
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1.5 Complex Numbers in the Real World

(Voltage, Current and Resistance)
ODhm's Law is a fundamental principle in physics that describes the relationship
between wvoltage *v', current ‘1" and resistance ‘R’ in an electrical circuit.
Mathematically Ohm’™s Law can be expressed by the formula F = {8 .
when dealing with alternating current (AC) circuits, resistance generalizes

to impedance (£). Resistance in a circuit is due to -
inductor (X)) and capacitor (X,.). Their difference is - h‘r'
reactance X = (X, } — (X,.). Geometrically it is shown i
in the adjacent figure. Here Z=R+iX o

Then for AC circwits, Ohm's Law i Terms of 7
Impedance is expressed by the formula ¥ = /-7,
Example 17: I the impedance of circuil is 11{cos 55.35" +/sin 35.35%) ohms al a

voltage of ZS{CUH 30 +isin 30° } WV, find the value of current in the circuit.

Solution: Substitute the voltage 25(cos 30° + [ sin 30°) and impedance
I 1{cos 55.35% + [ sin 55.35%) into the equation F = IZ , where V' is voltage, [ denote
the current and Z is impedance.

Zﬁ{cnﬂ 3F +i win 30"] [ .1 cos 55,35 +1 sin 53,35°%)

25{::13:1 3F +7 sin 3(]"}

ar f= ,
IHcos 553537+ 5 55.35)
3 ;
= lf[uus{ﬂF—SS.SS“F isin{ 30° —55.35‘”"}

= 2.27] cos(~25.35 ) +isin( -25.35")

Express into rectangular form
£=227[0.90+i{-0.42) |- 2.04-0.95

Thus, current 1s 6—4.217.

Cryptography: It is the science of securing information by transforming readable
messages called plaintext into secrete code called ciphertext using mathematical
algorithms and encryption keys. It consists of two main processes i.e., encryption to
lock message with complex math, and deeryption to unlock it with the right key,
Example 18: The word "MATH" is to be encrypted by multiplying a complex number
k=2 + 3i and then decrypted back to its original form using the concept of
multiplicative inverse in complex numbers.
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Each letter of the alphabet is assigned a numerical value as follows:
A=1,B=20C=3,..,LZ=26

Solution: First, we assign cach letter in the word *"MATH™ a complex number with

Fern imaginary part. The encryption and decryption shown in the table below

Letter |[Complexs Number (£} sencrypled =z = & g decrypted =z enerypted / &) Letter
vl 13+t 13+ 2+ 30 =26+30 (26 + 39D 2+ 3= 13+ ¢ M
A |+ 0 (T+OiH2+30=2+3 | (2+3/(2+30=1+0 A
T 2004 (204 W2 + 30 =40+ 600 40+ 60072 -3 =20+ T
H Eob iy (B A+ 02+ 30 = 16+ 244 16+244 /2 + 31 =8 + 0i H

P~ EXERCISE 1.5 4

I.  Plotthe following points:

; f_ 5
i (2, 75) (i) (-3, 120} (i) [1 %] (iv) Ls. T”’]
: )
5 &) : I [ 9 19z . [ 5 5w
V) | ==, — | vi) | =3, —— iy | ==, =— [{i¥) |[==, —
( [13) ( ( 3,{} 2 |1J{ 7 12
2. Express the following complex numbers in polar form :
) ) 1 43 . 58
i) 43 (i) 1+i (iii) —+—i (lv) —=——=i
(i) 3 ) iy ) I
5 48 L 145 8 iR
V) == —i Vi) —4—1i (vii) ===—1
W Sttt Mgt 33
3. Convert each of the complex number z in the rectangular form x+iy:
: - 1 s o T oo
i 4 CDS—E+|"5-III— {ii) — cos—T+:31n£
y 3 3 ;- 6 1
237 ; 17
(iii) |:|=T. arg(z)=— {iv) |.3|=]1, arg{z)=———
12 12
(v) |zl=?,ﬂrg{z]=—lf; (vi) 2cos{—33)+7 2sin(-33)
(vii) |2|=12, argiz) ==
- Iz = *'.PII rmrr I isin = tand = ."". l"LH;T isin T lthen find
L 4 i e 3 )
i z+z (i) z-z, (i) z-z, iv)

-



16.

17.

.
]

It 'z = ".-'l cos

R [ It w Tl 2
+ PRI —— |-‘:Ll]d zﬁ—|1| GO —— + J5in —— |lhn;:n find the
12 i i | i 1)

following and express the result into x + iy form

() z+z () z-z, (i) zoz (V) =

z
Divide z, = G{cos 1507 + { sin 1530%) by 2, = 3(cos 30° + 7 sin 30°) and express in
x+iy form.
Multiply z, = 2(cos 607 + i sin 60°) and z, = 5{cos 90° + i sin 907) and express in
x+iy form.

Find the modulus and argument of z= -2 — 2.

Wrile the equation urgl: :—2+I] = T In cartesian lorm, 1l = x+1y.

. show that x* + ¢’ =4z +2y-5=0.

= i Y
If z=x+iy and arg[ ﬁ |— e
CEF =21
If z=x+iy and arg{z-2-3i)-arg( 2+ 2+ 3i}=2x , show that 2y = 3x.
Solve the equation |z - 2i| = !E . 1| for z=x+iy.
For z=x+iv, solve the equation |53— d+1i = |5: -3+ 2i’| .

Determine the set of poinis = = x4+ iy that satisfy the equation |33 -2+ :'i =3z +il.

'd ]
i q 3 oo o . "
An AC source supplies a voltage of = ]2Ii1| C[}HIE+IHII1;— | volts to a crreut

L

1+ I'\.'E

with impedance & = ohms. Calculate the current i polar form.

An AC circuit has an impedance of 2 — 3 — 6/ ohms and is connected to a voltage
source of ¥ = 90 30f volis. Find the current in both rectangular and polar form,
Encrypt the word "CODL" by multiplying the complex encryption key £ =2 — .
Then decrypt it back to the original word.

Consider the complex encryption key & = 3 = 3i. Encrypt the word "QUIZ", and
then recover the original word using the inverse of the key.

Encrypt the word “CLASS” by adding the complex encryption key k= 3 + 44,
Then decrypt it hack to the onginal word.



INTRODUCTION

Functions are fundamental in mathematics, describing relationships between inputs
and outputs through a rule of correspondence. Understanding key concepts such as
domain, co-domain and range is essential for analyzing different types of functions,
including one-to-one, onto and bijective functions. Graphical representation helps in
identifying intersecting points, such as where a linear function meets the coordinate
axes, where two linear functions intersect or where a linear and a quadratic function
cross. These inlersections provide valuable insights inlo solving equations visually.
Additionally, exploring square root and cube root function graphs allows for a deeper
understanding ol their unique properties and behaviour. This unit will enhance
problem-solving skills by combining algebraic and praphical approaches to functions.
2.1 Concept of Function

The term function was recognized by a German Mathematician Leibniz (1646-1716)
to describe the dependence of one quantity on another. The following examples
illustrate how this term is used:

(i) The arca “A7 of a square depends on one of its sides *x" hy the formula

A=x", s0 wesay thal A is a [unction ol x.

{11}  The volume “F7 of a sphere depends on its radins v by the formula
4 1 . .
F= E.ﬂ"-"" , 50 we say that V is a function of r.

A function is a rule or correspondence, relating two sets in such a way that each
clement in the first set corresponds to one and only one element in the second set.
Thus in, (1) above, a square of a given side has only one area and in. (ii) above, a
sphere of a given radius has only one volume.

Now we have a formal definition:

2.1.1 Definition (Function, Domain, Codomain, Range)

A funetion [ from a set X to a set ¥ is a rule or a correspondence that assigns to each
element x in A a umque element v in ¥, The set X 15 called the domain of 7.

The set of corresponding elements ¢ in ¥ is called the ramge of /1 While the
codomain of a function is the set Y in which function’s output values (range) he.
Unless stated 1o the contrary, we shall assume hersafier that the set X and ¥ consist of
real numbers.
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m'ﬂﬂ—dﬂmain 15 the set of all possible outputs but the range 15 the actual set of outputs
produced by the function under the given domain that is range set is always & subset of eo-domain,

2.1.2 Notation and Value of a Function

If a variable y depends on a variable x i such a way that each value of x determines
exactly one value of p, then we say that 15 a function of x7.

Swiss mathematician Fuler (1707 — 1783} invented a symbolic way to write the

statement “y is a function of x as y = fix), which is read as “y 15 equal 1o fof x™.

A tunchon can be thought as a computing
machine ( that takes an input x, operates Function .
on it in some way and produces exactly Luput x I Output f (x)
ome output f{x). This output fix) is called

e ; : : Computing Machine
the value of fal x or image of x under £

the output f{x) 13 denoted by a single letter, say v and we write v = f{ x),

The variable x is called the independent variable of f'and the variable y 1s called the
dependent variable of /. For now onward we shall only consider the function in
which the variables are real numbers and we say that {15 a real valued function of
real numbers.

Example I:  Givenfix)=x 2 +4x |, find: (n f0) (my f1)
If %
(i) 1 2) M M40 @ [ |0
W X

.“iulutiun:_}‘i{x‘1=f 27 +4x—1
() AM=0-0+0-1=-1
(i) AD={P-201F+4D)-1=1-2+4-1=2
(i) fi-2)= -2 —2(-2¥+4-2)—1=-8-8-8-1=-25
(iv) fil+x)=(1+xP =21+ +aql +x)-1
=l+3x+I+xr 2 dx T +4+4x 1
_1I.‘-+ 1,‘2_|. G+ 2

2
(iv) jﬂJ._“J—zﬂJ f bt far gy
n X Lx L ¥
Example 2:  Find the domain and range of f{x) = x°.
Solution: For every real number x f{ x) = &7 15 a non-negative real number. So,

Domain f'= set of all real numbers ; Range f= sct of all non-negative real numbers.
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Example 3: Find the domain and range of f{x)= \I 3
I' ——

7 is not defined. So.,

Solution: Atx=2andx=-2, f(x)= X

Iz e
Domain /= set of all real numbers except —2 and 2 or & - §-2,2}

Let }:=+4—‘-"}’{I:—4]'=x_b y—dy=x

A
—{- EJ'It“,fli:—I}E —4{vii—4y) There are two types of
£= 3y intervals  known  as  open
¥ interval and closed inferval,
2 In an open interval (a, ), the
3 Lk oL L0y LD cndpaints ane not included. In
2y a closed  ineereal |a, bl

il Akt 55 ya 0 the endooints are included.,

For » =0, wehave 0= 1.:: =x=10
x =4
A =0
So, range f= set of all real numbers or {—c,x)
Example 4:  Find the domain and range of f(x)=+x"-9_
Solution: Yx' =920 = x"=920 (1)
Let ©-9=0= x=43

Critical points divide the number line into three regions:

Putx=—4in (i), 10=920 (True)

Putx=0in (i), =229 (False)

Putx=41n (i), 19-2=0 (True)

S0, domain /= {—c, 3w [3, o)

The smallest value of ¥ =950 (when x=43).

R

As |.r| mereases bevond 3, x° — 9 grows o <o, 50 v grows o o,

So, range /" = [0, =)

2.1.3 Vertical Line Test

The vertical line test 15 a method used to determine whether a graph represents a
function. A graph represents a function if and only if no vertical line intersects the

graph more than once. T any vertical line passes through the graph more than once, it
is not a [unclion.




m Functions and Graphs 4> Mathemarics m

Explanation is given in the figure.

¥ ¥ 1 ¥
A A L

f/\/:/_\ll, f/’/JI/ /__N;\ = i
o

|

I I
' f = T X
o &0 : 0 :
: I

: )
(a) afunction (b} a function (c] nota function {d} not a function

— -

2.1.4 Types of Function

(i) One-to-One (Injective) Function

A function f is one-lo-one il dilferent inpuls produce dillerent outputs, 1e., if
Six )= x,) implics x,= x,. This means that no two dilTerent elements ol the domain
map to the same element of the co-domain.

For example, f(x) = 3x + 7 is one-to-one because if 5x,+ 7 = 5x,+ 7 implies x = x,.

(ii)  Onto (Surjective) Function

A function f:X -V is called onto (or surjective) function if every element in the
co-domain ¥ has at least one pre-image in the domain X In other words, for every v
in ¥, there exists an x in X such that f{x)= .

For example, f{x)=2x+3, where the domain and co-domain are buth real numbers.

y—3 . ol i
Here y=2x+3 = x= T . Here for cach vy in R, there exists = in £ such that

y—3 : i
f-[ . = )j: v, Hence {is an onto function.

(iii)  Bijective Function
A function f: X — Y is called bijective il it is both one-to=one and onlo.
Piecewise Function

A piccewise funclion s a lunction that 15 delined _ _;‘-T i
by different expressions  (or  "picces")  over 2 /
different intervals of its domain. Each piece applies ] /
to a specific part of the domain. X AV ¥
o [2x+1 i x<0 i e P

Forexample, [{x)=< | ;

=1 if x=0 2
For x = 0 the funchion behaves ke 2o+ 1 and for b

1r.|

x =0, it behaves like x* —1
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Example 5: Show that the function f{x)= x+1, where the domain and co-domain

are all real numbers, is bijective,
Solution: A function is hijective if it is both one-to-one and onto,

A function is one-to-one il f{x)= f(x) = x, =x, lor f(x)=x+1
Suppose f{x )= f(x )

x+l=x+1

p— X

=X,

So, the given function 15 one-to-one,

It is also onto because for every real number y, there is a real number x (specifically
x =y 1ysuch that f{y—1)=y» 1+ = v. Therefore, f(x) is bijective.

Example 6: Show that the function f(x)= x* =2, where the domain and co-domain
are all real numbers, 1s neither one-lo-one nor onlo.

Solution: As f{x)=f(x,) = x'-2=xi-2 = x'=x]

Taking square root, we get x, =x, Or x, =—x,

This does not imply that x, = x, , for example 2 ¥
x=2x,=-2=x#x and f{2)=2= f({-2}). . | 3

Thus, fis not one-to-one. fie2=2 = A
Also, the element —2 in the co-domain & is the smallest |, ?\ : =

value that f(x)=2x" -2 can atain, and it is only s :’] z2 3
achieved when x = (. However, any number less than —2 b

{in co-domain &) is not the image of any real number x in -3
domain R. For example, f{x) 3 =x’=2=-3has no ¥
real Toot.
V" EXERCISE 2.1

I. Caven that; ) fixi=x-1 b fix)=+v2x+3 Find:

(i) A-3) (i) f(0) (i) flx—2) (iv) Axi+3)
2. Find e .I-”I} &AL, and simplily where,

']
(i) fix)=dx-7 {il) fix)=sinx
(i) o=+ -1 {iv) flx)—tanx
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3. Express the following:

(a) Thearea A of a square as a function of its perimeter P,

(k) The circumference C of a circle as a function of its area A.
(¢} The surlace arca 8 of a cube as a function ol its volume

4. Find the domain and the range of the function g defined helow:
(i) sx)=3-x (i) glx)=+x+d
) g =1, = ®) g)=lr-5
|4-3x,x>-2
5. Given fizxy=x —ax* + hx+ 1, Iff12)=-3 and f{—1}= 0, Find the values of
a and b,
Pl ; A e 2
6. Find the domain and range of g(x)=_—
3—x
7. A stome falls from a height of 60m on the ground, the height & after x seconds is
approximately given by hix} = 40 — 1057,
(1)  What is the height of stone when:
(a) x=1sec? (b} x=15sec? ) x=1Tsex?
(i1 When does the stone strike the ground?
8. Consider the function f{x)} = 3x -5,
(1) Determine the domain and range ol f(x).
(i1 Ts the function fone-to-ome? Tustify your answer.
(iii) Is the function fonto if the co-domain is all real numbers? Explain.
9. Letf: B — Kbedefined by f(x)= 'I_'.ul_lj
(i) Find the domain and range of f(x). (i1} Determine whether /(x) is onto.
(111} Prove that j (x) is one-to-one.
10, Consider the functon f2 B — BT detimed by f (x) = ¢, Show thal f {x) 15 a
hijective.
1. Let gz B+ K be given by gix) = 2 3x. Determine 1if gix) % injective and/or
surjective.

2.2 Finding the Intersecting Point(s) Graphically

The point of intersection is a point where two or more graphs meet on the coordinate
plane. This point represents the solution(s) to the equations of the given functions.
2.2.1 Intersection of a Linear Function and Coordinate Axes

As we know that hinear function 15 a function in which the highest power ol the
vanable is one. While the coordinate axes refers to x-axis and v-axis in the Cartesian
coordinate system,
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Example 7: Find the points of intersection of a linear functiony

coordinate axes.

Solution: Table values and the graph of v =2x + 6

is given below:

X F=2x+6
-1 4

0 ¥

| 8

Mathemarics m

2x+f6and

Hence, from the above graph, the points (3, 0) and (0.6)are the points of

interscetions ol y = 2 v+ 6 and coordinale axes.

2.2.2 Intersection of Two Lincar Functions

The point of intersection of two linear
functions is the point where their graphs
cross cach other. This means the two
functions have the same x and v values at
that point,

Example 8: Find the point of intersection of
y=3x+2 and y=—-x+6.

Solution: Table of different values of x and v
is given below:

X y=3x+2 | y=-x+6

1 1
0 2 &
1 < 5

2 3 4 5 €NT &

By plotting the above points, we see that {1, 3) 15 the point of intersection of both the

straight lines as shown in figure.

2.2.3 Intersection of a Linear Function and a Quadratic Function

A line and a parabola can either intersect at two points, one point or not intersect at
all, If there are two solutions, the system has fwo points of intersection, A single
solutton indicates that there 15 only one intersectiom point, suggesting that the line
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may be tangent to the parabola. If no solution exists, it means the line and the
parabola do not intersect.

v I $y ¥ X

=5

0 ¥ 7 / t 7 / 2
Twa Solufiens {Ine Salutionz Mo Salutions
Example 9: Solve the lincar function 3= —x+ 3 and guadratic function

v=x" —6x+3 graphically.

Solution: Clearly (3, 0) and (0, 3) are the x-intercept and y-intercept respectively of
y==x+3.

y=x"—6x+3 ..i)

Put x = 0 in (i), so {0, 3) is the y-intercept,
Put y= U in (1), we have

0=x"—6x+3
o ~(~6)= f(—6)" — 4(1)(3)
' 2(1)

y 6+36-12
B g
f++24 ¥

-

(62246

2
.r=3:|:-..lf{€

~x=3_‘u'f{?-'.3""d{g =

x=0.6,54 -

So (0.6, 0) and (5.4, ) are the r-intercepls.
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Now we find vertex (4, &) of the parabola
h —6
S _E -
k=03 -6(3)+3=—6
S0, the verlex 15 (3,—6)

Hence (0, 3) and {5,=2)are the solutions (poinis ol intersection} of the given
functions,

2.3 Graph of the Square Root Function

Example 10: Graph the square root function v = 2 +1

Solution: Clearly the domain of ¥ = 24x 4+ 1is x = (), as the square root of a negative
number 15 not & rea] number. The range of v = 1\"'; + lis y = 0, as the square root of

a non-negative number is also non-negative.
Table values and the graph of the function are given below:

x |y=2x+1

( | B :

1 3 7

2 3.8 &

3 4.5 [3

4 5 s

5 53 )

6 5.9 f _ ,

7 6.3 X
R % M 1 T % 4 5 & T 2 % 10 1
g 7

10 7.3

2.4 Graph of the Cube Root Function

Example 11: Graph the cube root function y=4/x-1

Solution: As we know that cube root function is defined for all real numbers because
the cube root of any number (positive, negalive or zero) is always real. Therelore, the
domain of the given cube rool [unction 15 all real numbers. The range of the given
function is also the set of real numbers.
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Table values and the graph of the function are given below:

o o

Gl o x-1 — 251 r—

5 |8 || Y TS "

4 1.7 1.5

3 1.6 . 1

2 1.4 r—t L i

-1 -1.3 s i

5 l —5—5—4—3—1-”3/;1345&
T - 05

1 1] {E—=d B T | | =

2 J. l-ﬁ

3 1.3 :

4 1.4 1= [ el |

5 1.6 4

2.5 Real Life Applications
Growth and Decay in Finance (Predicting Long-Term Stock Prices)

When something increases in quantity or size over time, it is called growth. For
example, money in & bank account eaming interest (it grows larger), a population of
rabbits is increasing over months,

When something decreases in quantity or size over time, it is called decay. For
example, a radicactive substance is losing its strength over years, a cup of hot
coffee i1s cooling down over time.

Example 12: The value of a stock tollows the exponential growth model P{r) = Pne’",
where F, is the initial stock price, » is the growth rate per year and ¢ is the time in

years. Suppose a stock is currently valued at Rs. 3,000, and it is expected to grow at a
rate of 3% per vear.
(i) Find the value of the stock after 10 years.
(i) After how many years will the stock double in value?
Solution: (i) The formula for the exponential growth is:
Py = Pe”
Given P, = 5,000, r = 0.05 (3% growth rate), and ¢ = 10 years.
P10 = 5.000 M50 = 5 000 &
Using ™ = 1.6487
F{l1y=5000 = 1 6487 = K144

S0, the value ol the stock alter 10 years is approximately Bs, 8244,
T —
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{ii) We want 1o find r when the stock doubles, i.e., when P(r) = 2F,. Using the
equation:

P, =F,e"
Dividing both sides by £, we have 2 = ¢"
Taking the natural logarithm on both sides: In 2 = »

and t =In2/r=0.69310.05=13.86
So, the stock will double in value in approximately 13.86 years,
Example 13: The concentration of a pollutant in a lake, in parts per million {ppm),
decays over time according to the function
1iW}

= ﬁ

where 1 1s the time in days since the pollutant was introduced.
(i)  What is the concentration of the pollutant after 4 days?
(i) After how many days will the concentration drop below 10 ppm?
100

Wi+l

. where 7 15 the

Solution: (1) The pollutant concentration function 1s Cir) =

time in days.

Concentration afler 4 days:

1060 (b
Ol s e = = A4 T2 ppm
Ji+l of5 =
The concentration atter 4 days 15 about 44.72 ppm,
(i) When will the concentration drop below 10 ppm? Set () = 10
10= L =i+l =10=r+1=100=1¢=99
i+l

Aller 99 days, the concentration will drop below 10 ppm.

¥ EXERCISE 2.2 _{

. Find the point of intersection of the coordinate axes and the following linea

tunctions graphically

(i) y=-5x+10 () yp=2x-1

(iii) ,‘l’—i-’f—f’-i (iv) ;|J—E';.1:+E
2 2
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2. Find the point(s) of intersection of the following functions graphically;
(1) fix)=2x+5, gix)=—x+35

(i) f(x)=3x-2 ., gix)=10-x

(i) f{x)=2x-4 , g{x)=3x-1

{iv) S(x)=-3x-4, g{x}=%.r+3

v) flxy=x-1, glx)=x"-4x+3
(vi) fix)=3x+4, g(x)=x"+2x-8

3. Graph the lollowing lunctions:

® y=+3s (i) y=x+5 i) p=—afx

2
(iv) y=—x+1+2 ) y=¥2x+1 (vi) v=2¥x-3

(vil) y=4yx"+x-2

4. A building’s height over time is modeled by H(¢) = 100 + 20¢ which is in metres
and 7 is the time i months, The height of a growing tree nearby is given by
Tiry =50+ 10¢ + ¢,
(i) Atwhat time will the building and tree have the same height?
{11) What will that height be'?
Sketch the graphs of both functions and determine the time when the tree will
overtake the height of the building,

5. A radioactive substance has a half-life of 2 years, If the initial gquantity is

1 :
: | , then find the

o TR

200 grams and the exponential decay function is O(r) =0

remaining quantity after 6 vears graphically?



Theory of Quadratic
Functions

INTRODUCTION

This unit explores methods to find the maximum and minimum values of quadratic
functions using completing the square and praphical analysis. It also covers the inverse
of gquadratic functions, determining their domain and range. Additionally, students will
learn to solve absolute value quadratic equations and inequalitics, as well as equations
of ratiomal, radical and exponential forms that can be reduced to gquadratic cquations.
Finally, the unit demonstrates the practical applications of guadrabie equations and
mequalities in solving real-world problems, providing a strong foundation for problem-
solving and analysis.
3.1 Quadratic Function
A quadratic function is a polynomial function of degree two. It is typically expressed
in the standard form:

fix)=axr*+bx+c
where a, A and ¢ are real numbers, and a & (1
3.1.1 Analyzing Quadratic Function by Sketching

i [
L i

As we know shape of the graph of a quadratic ]

/
N,
\ Py i
function f{x) = ax* + bx + ¢ is a parabola. The \\__H ' / /

"
-
1

%

W -

parabola opens upward or downward, depending on ’
the sign of the leading coefficient @, as shown in the a=0 a=0

given figure.
The tip of the parabola, labeled as 'V in the diagrams above, is known as the vertex
having coordinates (&, &). The vertical line passing through the vertex serves as the
axis of symmetry for the parabola. The vertex represents a turning point, where the
graph changes direction,

o Ifa =0, then the vertex is a minimum point.

o Ifa =<0, then the vertex 1s a maximum point.
For sketching the quadratic function, we need to find the x-intercept, y=intercept and
the vertex. For analyring the sketch of quadratic function, we find whether the vertex
i% & minimum o a2 maximum point and indicate the intervals where the function is
mnereasing or decreasing.
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Example 1: Sketch and analyze vy = —x* —2x + 3,
Solution: y=—x —2x+3
The y-intercept is v =—0)° = 2(0) + 3 =13
The x=inlereepls are [uund by solving the cquation:
P—2x+3F=0 or ¥+2xr—3=10
X+iIx—x—-3=0

xx+3N—-Hx+3)=0 E_l‘djs,“'T .
(x+3)x-1)=0 B
x+3=0,x~1 =0 4
x==3 x=1 | \
Now, we find the vertex : | A -
T B e T 2
b (D T
2a  2(—1) e
k=—A-1y-2-1)+3=—-1+2+3=4 X = \
So, the vertex (-1, 43 is a maximum point, The function y _4"_,;

is increasing on {—=, —1) and decreasing on (-1, =)
3.1.2 Finding Maximum and Minimuom Values of Quadratic
Functions by Completing Square
Completing the square is a technigue used o rewrile a quadratic [unction in the
following vertex form:
fixy=aix—hyP+k
. b b
Where vertex={h k), h=—— and k=c——
2a da

o 1fa =0, the minimum value of fix) at x= fis k.

o 1la=0, the maximum value ol fix)alx= his k
Example 2: Find the maximum or minimum value of
Jix)==2¢*+ dx+ 3 by completing square.

Solution: Jix)y==2(x"-2x)+3
fixy==22-2x+1-1)+3
Hx)m 211143
flxy=-2(x-1Pp+2+3
fx)y=-2x—1¥+5

Ilere a=-2<=0

Therefore, the maximum value is 5, which oceurs when x= 1. ¥

¥ (1, 5)
M igugn
walue

F
Ina | 1
mw d U __
b
.-—--'-:

A e ar
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Example 3: Find the maximum or minimum value of R
fxl=x"-2x-3. 4 Ill'r
Solution: Given that f{x)=x"—2x—3 i H—3H—1— J" -
Herca=1,b= 2, c= 3 2 f
i 1
_ b e AR [ s
2a 2(1) EEEYNEY EN
] 1 ’ i
hl _2 2 :
T s . | Lo
4a A1) | 31—
Here a=1>0 | + a4y
Therelore, the minimum value of fix) ate =1 1s —4. ' M [ o g '-'#"T
x ) orCws al x —

3.2 Inverse of Quadratic Function
Cuadratic functions are typically not one-to-one over their entire domain. To find an
inverse for a quadratic function, we must restrict its domain to a portion where it is
one-to-one. Commonly, we restrict the domain to either x = & (where & is the x-
coordiate of the vertex) or x < /1.

Example 4: Find the inverse of f{x)=x" +4x+3,x2-2. Also find its domain and

range.
Solution: M) =x"+4x+3 , x=-2
y=x"+4x+3
.J.'—'IL'2 +dy+3

V+ap+3-x=0 {Interchange x and y)
—4 4+ J{4) —A(IN3 -
P = "ilr{ }2{1}{ o, {Using the quadratic formula)
—4+Jl6-12+4x
2

—4+J4d+4x

F 5]
-4+ 2-fl+x
= - 3
j‘"’ (x)==2 L-u"] +x {Replace p wi[hj" x0

The above inverse function has both a positive and a negative component. To determine
which is the mverse, we find domain and range of the given function,
Domain f = [ 2, =)
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To find range, we proceed as

Since x=-2

Xz +4

dx =—¥8

X*tdy > 4

Hax+3 2—4+3

- Jix) =1
As flx) =x"+4x+3
= fix) =(x+2¢-1

Therefore, mimimum value of flx) is —land hence
Range f = [ |, =)
Domain /7 '=[ l.=) , Range /' =[ 2, x)
Now, we substitute any value of x that falls within the domain, We choose the value

x=1),
0= =2+ 4140 =-1
o= +2-J1-0=-3

We notice only —1 lies in the range of /. Therefore, we discard negative component,
Hence § '(x)= -2+4/l1+x

3.3 Absolute Value - | T FT ]
The absolute value of v, is defined as - Y=
> .
.=;|:[C'I v =l i i

|-x, x<0 5 "

. . Ed ;
3.3.1 Absolute Yalue Quadratic i:_d R e M B >

Equations

To solve the absolute value quadratic equations, all answers must be substituted back
into the orginal cquation o verly whether they are valid or not. Sometimes,
"extrancous” solutions may appear which are not valid and must be eliminated [rom
the final answer.
Example 5: Solve |2 - 4|=5
Solution: [¢* —4|=5

K—4=45

¥-4=5 or x*-4=_5

r =9 o x¥=-1
x=13 or x=%4-1= imaginary
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Check: For x=3 For x =-3
|3 —4| =5 -3*)-4|=5
|3 =5 13| =3
a=15 3=3

Hence solution set= {+3}
3.3.2 Absolute Value Quadratic Inequalities
Absolute value quadratic inequalities are inequalities that involve a quadratic
expression within absolute value bars, They are generally of the following form:
lax’ + bx+ o] <d | Jax + br+e| = d , jaxr + b+ el =d, jad + b+ o 2 d
Example 6: Solve |JL'2 —bGx— 4| <3
Solution: p® 6 4] <3
Jat—Bx—4<3

J<x—bx—4 or »—6xr—-4<3
r—b6r—4+3=0 or r—6fx—-4-3<0
r—bx—1>0 B ., x—6tx-7<0 (i1)

Here we solve ¥* —6x—1=10

(-6)+J(-6) — 4(1)(~ 1)

= 21
Gd-J36+4d

D]
6++40

Pl 2
6+ 210

p= 2

o= 32410

ST N

x=-.16 , 6.16
Hence critical numbers divide the number line into three regions.

r< (.16 e —1.16 < x < fi.16 x> 6,16

F,
W W

|
1
4

1 porppaenl [

| II T III I

-2 -1 i |
Test x =—1 in (1), we have

(—lF—-6(—1)-1=0 = +6=0 (Truc)

frodk e
ad—_—
L —t—
s
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Test x =0 in {1}, we have
(0¥ —6(0)—1>0 = —1>=0 (False)
Test x =7 in (1), we have
(MY =6(7T)=1=0 = 6=0 (True)
Solution set 18 {—e, —0.16) ) (6,16, o)
Now, we lake (11) and solve
P-tx—T7=0
FH+x-Te-T7=0
x+1)=Tx+1)=0
(x+1Dx—T)=0
x+1=0 , x-7=0
x=-=1 |, x=T
These critical numbers divide the number line into three regions.

. x=—1 " —l=x=7 N x> "

‘ | I i 1 1 | | | | | i l I 1 -

% T T i i 1 1 1 I 1 I I I T I *
-4 -3 -2 -1 0 1 Z 3 4 5 L] 7 S !

Testx=-2 , x=0 and x = 10 in (ii), we have
(-2)* - 6(-2)-T<0 =  9<0 (False)
(OF -6(0)-T7=0 = -7<0 (True)
(0P —6(10)—-T=<0 = 33=0 (False)
Solution sctis{ 1, 7)
Henee the solution set of the given absolute value guadratic ineguality 15
(oo, .16} w616, ) o {1, T =01, -0 16) (616, T)

F EXERCISE 3.1 4

I. Find the maximum or minimum value of the following quadratic functions by

completing sguare;

() f=x+6x+13 (i) f(x)=x"+4x
(iii) f(x)=-%"+8x+13 (v} fix)=-x*-3x-5
(v) _f{.t}:3.1'2+6x—]3 (vi) _,I"I[x]=—2.r2—x+il
2 Find the maximum or minimum point by sketching the following guadratic
functions. Also find their domain and range;
(i) S=x-4x (i} Sf(x)=x"-5:+6
(i) fix)=—x"+2x-8 (ivl flx)=x'—dx+4
(V) flx)=x"+2x-83 (vi} f{x)=6—x—x"
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3, Find the inverse of the following quadratic functions. Also find their domain and
range:
i) Sf(x)=x'-3, x<0 (i} f(x)=x"+6x+4, x<-3
(iii) (=28 -8x41], x=2 (v} fix)=3x"-2x+6, x=5
(V) fx)=2x=-3r+1, x=3 (wi) Fix)=-3(x+4)" -5 x<—4

4. Solve the following absolute value quadratic equations and inequalities;
(i) [ +1|=5 (i) | +5x+d|=0  (iii) [y’ —6x+8 =4
(iv) ' =Tu+2/=x?-x+] (v) |F-d4<5 (i) [P -3w+2]>4
(vii) | -~ Sx 1 6|<xi2 (viii) [26° - 3x - 5| < 4
3.4 Solution of Equations Reducible to the Quadratic
Equation

There are certain types of equations, which do not look to be of degree 2. but they can
be reduced to the quadratic equation. We shall discuss the solutions of the rational,
radical and exponential equations.

3.4.1 Rational Equations Reducible to the Quadratic Equation

A rational equation 15 an equation contaiming one or more rabional expressions, where
rational expressions typically contain a variable in the denominator,

|
Example 7: Solve —+
x. x+l

| 2
Solution: —+——=1
x x+1

Multiplying both sides by x{x+1), we have
(x+1)+2x=x(x+1)

=1,x#0,x#-1

x+1+2x=x'+x

3x=l=x"+x

X +x—3x—1=0
x* =2x—1=0
X
x=—pﬁi¢b&}—4ﬂﬁ4}=zi 4+4
2(1) )
7
x:zifﬁzzi£J§=1iJi

Henee, Solution 5t = {li \J'E}
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3.4.2 Radical Equations Reducible to the Quadratic Equation
Equations involving radical expressions of the variable are called radical equations. To
solve a radical equation, we first obtain an equation free from radicals. Every solution
of radical equation is also a solution of the radical-free equation but the new equation
has solutions that are not solutions of the original radical eguation. Such extra solutions
(roots) are called extraneous roots,

Example 8: Solve «,I'Ix— 8 +1,||[_:r+3 = 1,|'[12J.'+13

Solution: «.|":1'+E§ +1,.Irr+3 = 'q'rl 2x+13

Squaring both sides, we get

B4+ 3420 +8Ix+3 =122+ 13
2454+ 840r+3 =1+ 2
= A+ BNx+3) =5x+1

Squaring again, we have
4+ 11+ 24=25+ 10x + 1
— 24 —x—23 =0
= (24x+23)x-1)=0

23
x=—-—ar xr=1
24

y 23 . ; ;
On checking we find that — 7q B An extraneous root. Hence solution set = { 1}

3.5 Real World Problems of Quadratic Equations and

Inequalities
We shall now proceed to solve the problems which, when expressed symbolically, lead
to quadratic equations in one or two variables.
In order o solve such problems, we must:
1. Suppose the unknown quantitics o be x or y clc.
ii.  Translate the problem into symbols and form the equations satislyving the given
conditions.
The method of solving the problems will be illustrated through the following examples:
Example 9: The length of a room is 3 metres greater than its breadth. If the area of the
room is 180 square metres, find length and the breadth of the room.
Solution:  Let the breadth of room = x metres
and the length of room = (x + 3) metres
Area of the room = x{x + 3) square metres
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By the given condition, we have

xlx+3) =180 ..(1)

— X+3x-180=0 A1)
= {x 1t 13Hx-12)=0
x=—=15 or x=12

As breadth cannot be negative so x =—15 18 nol admissible.

Whenx=12, wegetx+3=12+3 =15
Hence breadth of the room = 12 metres and length of the room = 15 metres.
Example 10: A company manufactures laptops and its weekly profit function (in
thousands of dollars}1s Pix) = —x" 4+ 2x+3, where x is the number of laptops
produced (in hundreds). Find the range of production levels where the company
makes at least 54,000 profit
Solution: Here P(x)=4

-x*+2x+324
¥ +2x+3-420
-x*+2x=120
X =2x+1<0
(x-1¥<0
This only holds true when (x—1)" =0 = x =1
The company makes exactly 54,000 profit when 100 laptops are produced (sinee x =1

means 100 laptops), There is no production level where profit is more than 54,000,

P EXERCISE 3.2 4

[. Solve the [ollowing equations:

. 1 4 i ] +1 5

(i) I JL’=1,Jr;'l} (i1) - it x#=-10
ix 6 x+1 X 2

1 Z 7

(1ii) [ = xz2=-1,-2,-5
¥+l x+2 =x+5

. h 1 1 x+1 x-—1

(iv) — —atbird—s ) X ek
ax—1 hx—1 a b x—1 x+1

(vi) 3x"+15x—24x" +5x+1=2 (vil) v2x+B8+x+5=7

(viit) V3r+4 =2+ 25 —4 (ix) Vx+T+yr+2=y6x+13
(1) Jx+5-fx=-3=2
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A farmer bought some sheep for Rs. 9000, If he had paid Rs. 100 less for each,
he would have got 3 sheep more for the same money, How many sheep did he
buy, when the rate in cach case 15 umiform?

A man sold his stock of eggs for Rs. 2400, Tf he had 2 dozen more, he would have
got the same money by selling the whole for Rs. 0.50 per dozen cheaper. How
many dozen eggs did he sell?

A cyclist travelled 48 km at a uniform speed. If he had travelled 2 km/hour slower,
he would have taken 2 hours more to perform the journey. How long did he take
to cover 48 km?

To do a piece of work, Abdullah takes 10 days more than Abdul Hadi, Together
they finish the work in 12 days. How long would Abdul Hadi take to finish it
alone?

The braking distance (in meires) of a car is modeled by:

d(x)=0.025" +0.15, where 5 is the speed of car in km'h

If the maxnmum safe brakmg distance 1s 50 metres, find the range of speed where
braking is safe,

A rocket follows the height function f{r)=-51" + 200 + 30, where hyt) is the
height in metres and 7 is the time in seconds, Find the time interval during which
the rocket 15 at least 40 metres above the ground,



Matrices & Determinants

INTRODUCTION

This unit introduces the fundamental concepts and operations of matrices, equipping
students with the skills to perform matrix addition, subtraction and multiplication
involving both real and complex entries. It explores the essential properties of
determinants and provides techniques for evaluating the determinant of a 3=3 matrix
using colactors and determinant propertics. Students will learm w0 apply row
operations to detenmine the inverse and vank of matnees, as well as disiinguish
between consistent and inconsistent systems of linear equations through practical
examples. The unit further explores into solving systems of linear equations, both
homogeneous and non-homogeneous, using advanced methods such as matrix
inversion, Cramer's Rule and Gaussian elimination. Emphasis is placed on the real-
world applications of matrices in diverse fields such as graphic design. crvptography,
data encryption, geometric transformations and highlighting the importance and
versatility of matnx algebra in solving complex, practical problems.

4.1 Matrix

While solving linear systems of equations, a new notation was introduced to reduce
the amount of writing. For this new notation the word matrix was first used by the
English mathematician James Sylvester (1814 — 1897). Arthur Cayley (1821 — 1895)
developed the theory of matrices and used them in the linear transformations. Now-a-
days, matrices are used in high speed computers and also in other various disciplines.

The concept of determinants was used by Chinese and Japanese mathematicians but
the Japanecse mathomatician Scki Kowa (1642 | 70R) and the Genman Mathematician
Gotifried Wilhelm lLeibmiz (1646 1716) are credited for the invention of
determinants. G, Cramer (1704—1752) emploved the determinants successfully for
solving the systems of linear equations.

A rectangular array of numbers enclosed by a pair of bracket is called a matrix such as:

230

[2 =1 F ; 1 -1 4

l=s: 4 ?J O Y )
41 -1

The horizontal lines of numbers are called rows and the vertical lines of numbers are
=
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called columns, The numbers used in rows or columns are said 1o be the entries or
elements of the matrix.

The matrix in (i) has two rows and three columns while the matrix in (11) has four
rows and three columns, Note that the number of the elements of the matrix in (ii) is
4:x 3 =12. Now the general definition of a matrix is:

Generally. a bracketed rectangular array of men elements a1, 2, 3, ..., m;
F=1.2.3, ....m), arranged in m rows and # columns such as:

' 7

|1 T Sy o &y

in

iy ﬁ'j; v PV o i, i
2 . = (111}

i

.. . - d

. Bmz Ty -
is called an m by & matrix (written as mx 4 matrix), where m= g is called the order
of the matrix in {iii). The matrices are usuvally represented by the capital letters such
as A, B, C, X, Y, etc,, and small letters such as a, b, . [, m, n, or a,,,a,,4,, ..., etc,,
are used to indicate the entries of the matrices.

Let the matrix in (iii) be denoted by A. The ith row and the jth column of A are
indicated in the following tabular representation of A,

Jth column

b

& Gy By vt &y v &

By Wy Wy v Ol o @l

Wy Wy @y ot @y, Wy,
A= : : ; : : (iv)
ithrow —| @, @, d, -~ a, =

dn- E'Iln.' E:Il.lna ol L ke ity

The clements of the ith row of 4 are a, a, @, ... a;..a, while the clements of the

Jth column of 4 are @, @, a;,..4;.. 4, Wenotethat a,is the element of the ith

] i

row and jth column of 4. The double subscripts are useful to name the elements of

: . L8 B |2 -1 3
the matrices. For example, the element 7 is at &, position in the matrix [ ¢ @ #k
—5
For convenience, we shall write the marrix 4 as:
T ———
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i A n s __ - I P - ’ " -
A= [‘Ir;.'.]m S e [HJ_.'] tori=1,2 3 ...,mji=1 23, ..., n where a;1s the

element of the ith row and jth column of 4. :
I : " / & The matrix A is called real

matrix if all of its elemenis are
real.

The eclements (entrics) of matrices need not
always be numbers bul in the study ol
malrices, we shall take the elements of the
matrices from R or from O

Row Matrix or Row vector: A matnx, which has only one row, 1.e. lxa matnx of

the form [a, @, @, .. a,]issaid to be a row matrix or a row vectar.

Column Mairix or Column Vector: A mairix which has only one column ie.,
E.I'|I.-
Efgf

an mix | matmx of the form | a 15 said to be 4 column matmx or a column vector.

.3 i
Uy

-
F
For example [1 =1 3 4] is a row matrix having 4 columns and [ -1 [is a column

e

il
matrix having 3 rows.
Rectangular Matrix: If m = n, then the matrix is called a rectangular matrix of

order mr= i, that is, the matrix in which the number of rows is not equal to the
number of columns, is said to be a rectangular matrix. For example;

2 =30
2 3 1 1 2 4 ; :
| T and { e rectangular matrices o orders 2= 3 and 4x3
| &

Lad

o

respectively.
Squarc Matrix: If s = n, then the matrix of order m= n is said to be a square matrix
of order n or m. i.e., the matrix which has the same number of rows and columns is

1 1 2
2 3
called a square matrix, For example: [[]],l i ﬁ] and |2 =1 & |are square
2 15 4

matrices of orders 1, 2 and 3 respectively.
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Let 4 = [ay] be a square matrix of order a, then the entries a,,, a.., @, ..., a_ form

m

the principal diagonal for the matrix 4 and the entries a, , @, o @y, 20 e G50 84,

form the secondary diagonal lor the matrix 4. For example, in the matrix
Gy iy dy; Hy

ﬁl:l au {111

a, ,_1; ﬂ: . the entries of the principal diagonal are a,,.a,,.a.,,a,, and the
|G 0, a, NaE

entries of the secondary diagonal are a,,a.,.2,,.9,,.

The principal diagonal of a square matnx 15 also called the leading diagonal or main
diagonal of the matrix,

Dviagonal Martrix: Let 4 — [o] be a square matrix of order n.

Il a; = 0 for all i« jand at least one ai = U lor § = j, thal is, some elements ol the
principal diagonal of 4 may be zero but not all, then the matrix 4 is called a diagonal
matrix. The matrices

0 0 00
1 O 0
01 00 . .
[?], 2 0jand arc diagonal matrices.
3 00 2 0
> 0 5
0 0 0 4

Sealar Matrix: Lel 4 = |ay| be a square matrix ol order .
If ey = 0for all {+ jand i = k (some non=zero scalar) for all ¢ =, then the matnix

A 15 called a scalar matrix of order n. For example:

_ a 10 1 30 0 0
70 0 it 0300 :
] : a 0] {a#0)and are scalar matrices of order 2, 3 and 4
0 7 0030
0 0 o o O 3
respectively.

Unit Matrix or Identity Matrix: Let 4 =[o,] be a square matrix of order n, If a;, =0
forall i= j and a; = 1 for all i = j, then the matrix A is called a umiv metrix or identity
matrix of order n. We denote such a matrix by [ or simply f and it is of the form:

(1 00 -0
a1 0 -1
L=(0 010

oo0n -1
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1 0 0]
D10 ‘
a 0 1

The identity matrix of order 3 is denoted by [, that is, fi -

Null Matrix or Zero Matrix: A square or rectangular matrix whose each element is
zero, Is called a null or zero matrix, An pix n matrix with all its elements equal to
zero, is denoted by O . Null matrices may be of any order. Iere are some

el e—————

= [o 0 00
] [ ] g 0o 0 07| {7 may be used to denote
0}, 10 0 01{] il ﬂl-' 0 0 ju*ﬂ ¢ 00 null matrix of any order
g = ol o 00 if therc is no confirsion,

-

are null matrices of order 1, 1 x 3,2 x 3,2 % 2, 3 = 1, 3 « 4 respectively.

Equal Matrices: T'wo matrices of the same order are said o be equal if they have
same order and their corresponding entries are equal. For example, 4 = |a and
B=[b,]

other words, A4 and B represent the same matrix,

.:_.lrrr o

are equal, ie,A=B1ff g,=5, fori=123,...m, j=1,2,3, ..,n In

mEn

Transposc of a Matrix: If 4 is a matrix of order mxn then an sx mmatrix
oblained by interchanging the rows and columns of 4, 15 called the ranspose ol 4. I
is denoted by A Lt 4 [a,],,., then the transpose of 4 is defined as:

A" =[a;].., where a,=a, fori=1,23, .. nand j=1,2.3, ....m

Ii}I 1 hll bl.': P}H
= b!l E"E ; El'_, 'b!d . lhen
h3| h:‘! 'f}J." h3-1

L

For example, il #=[b,]..

B' =[h ], where h.=b, fori=1,2,3, 4andj=1,2 3ie.,

i

(&, b & by by by |
b, b, b = by, by by
B b b [by By by
A B P

Note that the 2™ row of B has the same entries respectively as the 2™ column of

and
-

B and the 3 row of 8 has the same entrics respectively as the 3% column of 8 cle.
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4.2 Matrix Operations

Matrnx operations mvolve various techmiques and procedures applied to matrices.
These operations are foundational in limear algebra and have applications in
numerous fields such as computer graphics, physics, statistics, etc. llere are some key
mAatriy operatons:

4.1.1 Addition of Matrices

Two matrices are conformable for addition if they are of the same order.

The sum 4 + B of two mxn, matrices Az[ay.] and Bz[f’.-.-] is the m> n matrix
l:'=[r_'”:| formed by adding the corresponding entries of 4 and 8 together. In

symbaols, we write as = 4 + B, that is:
LL;.;J— L‘”-_‘.‘ +"l-’._-.-J where ¢ = g +b lor i=L 2,3, ., m; j=12,3, .. 8

4.2.2 Subtraction of Matrices
If A=[a,]and & = [h, Jare matrices of order mx », then we define subtraction of B
from A as:
A—B=A+(-B)
= [a,]1+[-b,] =[a, +(-b,]=[n, -b,1for i=1,2,3,...m;j=1,2,3,...,n
Thus, the matrix A B is formed by subtracting each entry of B from the
corresponding entry of 4.

1 0 -1 2 2 -1 3 1
Example I: 1If4A=(3 1 2 5|and =1 3 =1 4 |, thenshow thai
0 -2 1 6 b2 =
(A+BY = A"+ B
Solution:
1 0 -1 2] [2 =1 3 17 [142 0+{(-) ~-1+3 2+1
A+B=|3 1 2 531+|1 3 -1 4 |=|3+1 1+3 2+(-11 5+4
0 -2 1 6] |3 1 2 —1] [043 =241  1+2  6+(-1)
3 =1 2 3]
=4 4 1 9
3 -1 3 5]
3 4 3
¢ =14 =i :
and (A+ B = Y 1 1 (1)
3 9 5
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Taking transpose of 4 and ¥, we have

1 3 0 o T - o
| B L e =1 3 1
A=l_12 1 |ME=|3 ) ;3
|2 5 6 Al |
1 3 o1 1 3 T3 4 3
n 1 2 | 1 1 1 4 1 o
A+ B = +
= a2 1|2 21 272 1 a (i)
(2 5 &6 1 4 =) |3 9 s

From (1) and (11}, we have (44 BY = &'+ &
4.2.3 Scalar Multiplication
If 4= e, | is > matrix and & is a real or complex number, then the product of & and
A, denoted by kA, is the matrix formed by multiplving each entry of A by £, that is
i = [k Now:
Obviously, order of kd is mx n. If mis a positive integer, then
4.2.4 Multiplication of two Matrices A IO s
Two matrices A and & are said to be conformable for the product A8 it the number of
columns of 4 is equal to the number of rows of B,
Let A=[a,] bea 2x3 matrix and & = [5;] be a 3 * 2 matrix, then the product A5 is
defined to be the 2x 2 matrix  whose element ¢ is the sum of products of the

corresponding elements of the ith row of 4 with elements of fth column of B. For
example, the element ¢,, of C is shown in the figure (A}, that is

1" column of B
h,
— i,
] | [_"i'.':
I- v llf.r‘ iy by Clyy

Figure (A}
€y = @y By + dnlyy iy, By Thus

e | I’;rl'l I"‘rl"'
AB— iy i | B b | ayhy +aphy, +aghy apb, - abh, +agh, (i)
il gy, +anlb, faghy aub, +agb, vash,

v.ir FEl | b“ hw ZE
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-

B Blr s s
e i ;
Similarly Bd=\h,, &, n 9 ,_|
b b |t f= %l
-1 LFa

nayy + by byay haas bha +hpag,
=[byayy +bpay bya thyay  byag +byay, {i1)

_'IEIEI'['EII +h,ay,  bya, +"E'3:“.":' hi:“li +b,a,,

From (1) and (n), 48 and 84 are calculated their orders are 2= 2and 3x3
respectively,

Notel. In general, AF = BA

Note 2, If the product AR 15 defined, then the order of the product can be illustrated as
given below:

Order ol 4 — mxn
Order of B | X p
Order of AB k\, mx p ..-f’l
2 -1 0 2 =273
Example 2: If A=[1 2 -=3|andB=|-1 -4 6|, then compute A°B.
1 2 -2 b =5 3

Solution: AA=d-d=|1 2 =3||1 2 =3

[ 4=1+0 =2=2+0 0+3+0 3 -4 3
=|2+2-3 —1+4=6 0=6+6(=|1 =3 ©
242-2 —1+4=4 0-6+4| |2 =1 =2

3 =§ 3 2 -2
A*8=|1 =3 0 ||-1 -4 &

2 -1 =2|{0 -5 5
(6+440 —6+16=15 9-=24+15] [10 =5 0O
=|2+3+0 =-2+12+0 3-18+0 (=5 10 =15
| 4+140 —4+4+10 6-6-10 5 10 -10
m Powers of square matrices are detined as:

A=A A, AF=AxAxAd

At=Axd = 4= - ton faciors,
T ——

(¥
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Properties of Matrix Addition, Scalar Multiplication and
Matrix Multiplication

If A, B and " are contormable for the indicated sum or product of matrices and ¢ and
o are scalars, then following propertics are troe:

(i) Commutative property w.r.t. addition: 4 + B =8+ 4

(ii) Associative property w.r.t. addition: {4+ 8)+ C= A+ (8 + )

(iii) Associative property of scalar multiplication: (cd)d = e(dd)

{iv) Existence of additive identity: 4 - O = O+ 4=4 [ii:::;:::::ﬂ:?: J
(v) Existence of multiplicative identity: {4 = 4/=4 (s uml/idenlily matrix)
(vi) Distributive property w.r.t scalar multiplication:

{(a) c{4+B)=cAd+cB b)) fe—d)A=cA+dA
(vii) Associative property w.r.t. multiplication: A(8C) = (A8)C
{viii) Left distributive property: A(8+) = A8+ AC
(ix) Right distributive property: (4 + 8)C =40+ BC
(X) AB)=(cA)B = A(cB)

201 1 -1 0
Example 3: FindABand BAit A=(1 4 2Z2|and B=|2 3 -1
306 Ao =2 3
2 0 1)1 -1 0
Solution: AB=|1 4 2|2 3 -1
3 0 ef|ll -2 3
[2x14+0x2+1x1 2x{(-1)+0x3+1x(=2) 2 D4+0x(=1)+1=3
= Ixl+4x2+2x1 Ix{—p+4x3+2=x(-2) I=0+4=(—D)+2=x3
[314+0x2+6x]1 Ix{=1)+0x3+6x(=2) 3Ix0+0x(=1)+6x3
3 -4 3
=il T 2 (i)
| & 13 18]
Il =% @128 1
B4={2 3 =1((1 4 2
1 =2 3|3 B &
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I 24+ (=1 14 0x3  Ix0+{=Dxd+0x0 Ixl+(=Dx2+0x6
=|2x2+3x ]+ (—1)x3 2x0+3x4+(—1px0 2x1+3Ix2+(-1)xb6
1224+ (=2)x1+3x3 Ix0+{=2)x4=3x0 Ix1+(-2)x2+3x4b

L -4 -~ Note:
=4 12 2 (ii) Mikix maliiplication: is not
¢ -8 15 commutative in general.

Thus, from (1) and (i1), AB # B4

P EXERCISE 4.1 _d

. If 4=[ay].,. then show that

(i) 1d=4 (i) Af, =4
I [ 2 1 =l 4 N =2
A IiFf 4=| 3 2 1 ‘ A --! | 2 4| and C=|=1 5 0Q |, then find
1 O 4 | I =& A i 4 |
(1) A-8 (n) B-C (i) (A-8)—C iv) A—(E-C)

D

If A and B are square matrices of the same order, then explain why in general:
(i) (A+BY #A"+24B+ 7 (i) (4—BY #A4°-24B+ R’
(i)} (A+BWA-By= A -8

[ SR

fet
1
-
==
b

2|, then find 44' . 4A'Aand(4')

& 5 X 1

5. Solve the following matrix equations for &7

2 3 -2] 2 =3 1
(i) 2X-34=F if.ﬂi:[ l 5|anud .Ef=L -‘

—1 _ 4 -1
2 0 1
(i) A -54+41-X=0 ifd=[2 1 3
I -1 0

4.4 Determinants
The determinants of square matrices of order » =3, can be written by following the
pattern. For example, ifn =3
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&y Ay A 4y
A=|a, a, a, | then thedeterminantofd =|d|=|a, a, a,
Sy Gy 5 dy 3 By
Now our aim is to compute the determinants of matrices of various orders,
4.4.1 Minor and Colactor ol an Element ol a Maitrix or its Determinani
Minor of an FElement: Let us consider a square matrix 4 of order », then the minor

of an element a, . denoted by M is the determinant formed by deleting the ith row

and the jth column of .vi[nr|.vi|j.

-
dy . g

For example, consider a square matrix 4 of order 3, A=|a, a, a,
| &y @y Gy
To find the minor of the element .. delete the first row and second column of 4

-p ey -y -l -

i o, i
= 21 23
iy dy, @y . thatis M, =
: : | Gy
dy ) dy

Cofactor of an Element: The cofactor of an element a; of a square matrix 4 denoted
by A[.J. 15 defimed by A = (- 1y ih"
ﬂ:l ”l.‘i

2 i I
For example, 4, =(-1)" M, =(-1'| "
%33

3l ity
4.4.2 Determinant of a Square Matrix of Order n =3
[ P+ N A
If A is a matrix of order 3, that is, A=|a, . a,, |,then:
Gy g g
Al =a,d,+a,4,+a,4, fori=123
or Al =a 4, +a, A +a 4, for j=1,2.3

For example, for i=1, j=1and j = 2, we have

4| =a, 4, +a,4,+a,4, (1)
or |A|=Hl."1|| ks a4y i}
or |"'i| =ty At A, vagd, {111}

1) cin e wrillen s =a, (=DM, e (=DM, a1 M
1ii) be wri A (-1 M (- M -1y M
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Le., [d]l=-a,M;+a.My,—a,M,, (iv)
Similarly (i) can be written as |d|= o M, —a .M, +a M, (v)
Putting the values of M, M, and 3, in (v}, we obtain
4= wfe Tl Dl O

or |"T| =y, I:’”:: fy3 = Caythyy Jes LUF m:l”'ﬁ =ty b+ Hu':“:l”:z = thyaily ) '[w}

or |4| = () G 8y + )y + 8y 8y — @) Gy — 85 0y — 0, 405.8,, (vii)

Equation {vii} 15 the required expansion of determinant of square matrix of order 3.

1 =2 3
Example 4: Evaluate the determinant if 4= -2 3 1
4 =3 2
L il
.‘-iuhllinn:!f]’|=—2 3ol
4 -3 2
using |4|=a, M, —a.M,+a.M, , we get
=1, H“‘E}rf 1L

= 16— H=3)]+ 21 (=21 2) = (1) (4)]+ 3|(-2)(-3) - 12]
=(0+3)+2H=-4-4)+306-12) =9-16-18==25

I =2 3
Example 5: Find the cofactors 4,,, 4, and A,,0f A=|-2 3 1 |and find |4|.
4 =3 2
Solution: We first find M, M, and M.,
-2 1 1 3
Ji“f]1= =—4_4 =—3 ; lﬁ-"f-w:‘ =2—|.1 =—“}
4 2 EE 4 2
3
and M, = =]=(=6) =7
pL¥. o | )
Thus A= 1M, = C1B)=8; Ay = (=1 M, =1(-10)=-10
Ay = (1Y My =(=1X7) =-7
and |4 =a d, +aud, +agd, = (=284 3=10)+ (=3)-T)

=-l6-30+321 --325
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4.4.3 Properties of Determinants

i.  Fora square matrix A, [4] =|47
ii. TIf in a square matrix A, two rows or two columns are interchanged, the
determinant of the resulting matrix is -4,
i, 1['a square matrix 4 has two identical rows or two identical columns, then [4]=0.
iv. Ifall the entries of a row (or a column) of a square matrix 4 are zero, then [4| = (.
v, If the entries of a row {or a column) in a square matrix A are multiplied by a
number k € R, then the determinant of the resulting matrix is &|A|.
vi. If each entry of a row (or a column) of a square matrix consists of two terms,
then its determinant can be written as the sum of two determinants, i.e., if
_I:III | I‘!-:li-l aIE dl.i
B=la,+hk, a, a;]|, then
Ly, +hy 2, ay
layth, ay a, a, ay ay| (b, a4, a,
|H| = :ull +b2| 'u]] I:’III'-- = I:TZI {4'1: I:TZ'-- + I?:"ZI ﬂl} ”Z'-u
iy thy o an ag| ey ay ay| |y g, ag
ay+hy oy | ey @y an| |y a, ag
|ay, +8y @y ay ay dn an|th, e, ay
gty ay, dy) iy 8y gyl By Gy
vii, If any row {column) of a determinant is multiplied by a non-zero number & and
the result is added to the corresponding entries of another row (column), the
value of the determinant does not change.
viii, If a matrix is in triangular form, then the value of its determinant is the product

of the entries on its main diagonal.

m We shall define triangular matrices on following pages

xr a+x b+cl

Example 6: Without expansion, show that [x b+x c+al=0

¥ c+x a+h

Solution: Adding the entries of C, to the corresponding entries of C,.

x at+htorx be
¥ a+b+c+x c+a

xr wthtotx athy
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it e by taking xfromC, and{a+b+c+x)
lakmmgriromC, and| g +&+oc+x
= xa+h+e+x)l 1 c+a |'~'E = '
L commen from C,
1 1 a+b
= xvla+b+c+x)-0 "~ €, and C, are identical)
=0
4.5 Adjoint and Inverse of a Square Matrix
4y dz 4y Ay oAy Ay
Let A=|a, a, a,/|.thenthe matrix of co-factorsofd =4, A, .|,
g3 By iy A Ay Ay
T S
andadj A= | A, 4, A,
_‘-Iil."L "{13 "J!H_

Inverse of a Square Matrix of Order # = 3: Let 4 be a non singular {|4] # 0) square
matrix of order &, If there exists a matrix B such that AB = 84 =/ _, then B is called
the multiplicative inverse of 4 and is denoted by 47" It is obvious that the order of
A7'is nxn.

Thus, A4 = {and Ala= e

If 4 is non singular matrix then
1 .
A =-—ad) A
|4
0
2

i
1
=

1

Example 7: Find 47'if A=|0
|

Solution: We first find the cofactor of the elements of A.

4, :{'”"'f. i‘= LE+=3 A4,={-1"

0 1
] ]‘— (=1-1=1

T L i ="”1|— 2=
Az =1 { =M =2)==2, A, =(=1) Ll (=130 +2)==2

-

T=1.0-29==1 ,d—{—lj'-'*l ¢ =(=1H=1-1h=1
1| ’ - I -1

1, = e
A 1
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:] ?‘ = (11— 0)=-1

o
A, =(-1)y I 3

2 1
]‘=1.({}—4}=_4s A =(-1) !

1«
fL=—I”| =1.{2-0)=2
_“!ll Au Al.l-_. 3 I -
Thus [A; =14y Ap 4dp|=[-2 -1 1
| Ay Ay Ayl |4 -1 2
(3 -2 4
and adj A=[A].=|1 -1 -l (A=A, fori, j=1,2.3)
=2 Lk 2
Since |:=I|—EJ'1.|.-‘I.|.|+H|:.-'EIL,+{J':_.A|_1.
=1(3)+ O{1) + 2(-2}
=3+0=4==1
3 02 4] [-3 2 4
So ;i'—%adj.fl— LI I =1 =1 =|-1 1 1
4 2 21 ]2 a2
P~ EXERCISE 4.2
1. Ewaluate the tollowing determinants:
] =2 2 =3 1 2 =3
(1) LI | (i) |3 10 -1 1) -1 3 3
2 3 -2 1 -2 -2 5 6
a+b a-b a 1 20 -2 .5 (S -
{iv]) g a+bh a-b {vi [-1 -1 -3 (vi} |y 2Zp ¥
a-h a a+b 2 4 -l z .z 2=
2. Without expansion show that:
7 8 U 5 6 -l —-a 0 b
(i) |5 6 7=0 (i) 2 2 0|=0 (iiy |0 a  —e =0
2 3 4 2 -5 10 ¢ =b 0
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R
||r m+n 1 7 ERL ar
(vl |me n+f 1[=0 {v) 3 9x|=0 (vivy |1 g SRR
|n I+ m 3 5 15x ®
i
g
p-q g-=r r=p V= IX
(vil) lg—r r—p p—g=>0 (viit) ([x 3 =z2]=0
r=p p—q gq-rF| E i
x y z
he a a| Il a a 2a a+bh a+c
(ix) lca & B|=[l »* ¥ (x) |2b 2B b+e|=0
;ub e | I ¢ b+e 2
3. Show that:
I 5 0 il 0 a+h g a
() |5 25 10{=251 1 2 (i) | ¢« a+bd a [=HQCa+h)
T 25 1 T 5 1 a a  a+h
1 = 3w 1 x £ m+n | I
(i) 1 v zx[=1 ¥ »° (iv) | m m+! m |=4lmn
| =z |l I = 2 n no I+m
v =1 x reosfl 1 — sindd
v) lx 3 0=x'+y {wi) ] 1 0 |=r
1 x ¥ rsin@ 0 cosd
i b e
(vii) b+¢ c+a a+bl=a’+h +¢'=3abc
at+b b+e c+a
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6.

g

10,

a+dA a a
(viti) &  h+A b |=A'(a+b+c+i)

-

I ¢ ot
] ¥
(i) 1 » Pl=Cx=y)p=zXz-x)
1 z =z

{x) | x ¥ z |=(x+y+2)x=yly-z)iz-x)

£ ¥ 2
I =5 =2 5
Ira=| 4 5§ 0|and #=|-3 -1 4|, then find:
~£ =2 7] =2 =1 3
(1) A, A Ay, and |4 (i) B,.8,, B, and |B|
Find values of x if;
3 1 x 1 x=1 3 11
(i) 1 -3 —-4=-30 (it} -1 x+1 2/=0 (i) 2 x
r 1 0 2 =3 36
x 2 2
Show that: (2 x Ig—h'—-lfh: x—2)°,
2 2 .r!
_ . N -3 2 -1 N
Find | A4 zsnc1|.-!.r|1: ii) J‘!:_Z ] 3?‘ (i) A=

If A is a square matrix of order 3, then show that [&4] = ¥ Al .-

Find the values of £ il 4 and 8 are singular.

% I 5 -2 4 5
d=|T A &, b= [ | Z 1
2 F 1 |4 # 0
I T ¥
Find the mverse of A=|-5 0 4 |and show that 4 'A=17,
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11. Verify that (48Y = 8'4
. - I I 2] 2
) 1 =l 2 " R 5
(i) A= | and B=|-3 -2 (i) A=|1 4|and B= |
i =81 0 5 =2 1]

-

4.6 Elementary Row Operations on a Matrix
Usually, a given system of linear equations 15 reduced to a simple equivalent system
by applyving elementary operations which are stated as below:
(i) Interchanging two equations.
{i1) Muliiplying an equation by a non-zero number.
(i11) Adding a multiple of one equation to another equation.
Corresponding o these three elemeniary operations, the [ollowing clementary row
operations are applied 1o matrices (o obtain equivalent matrices.
(1) Interchanging iwo rows
(i1}  Multiplying a row by a non-zero number
(111} Adding a multiple of one row to another row,
m Matrices o and & are squivalent if & can be obtained by applying in turn a finite number of
row Operations an A
Motations that are used to represent row aperations for [ to III are given below:

[nterchanging R.und R, 15 expressed as 8 < R
ktimes K is denoted by kR — K
Adding k times R, to & is expressed as £ + 4R, — K
(R is the new row obtained after applying the row operation).

For equivalent matrices 4 and B, we write 4 £ 5.
WA RBthenB R A4

Upper Triangular Matrix: A square matrix A=[a Jis called an upper tmangular
matrix il all elements below the principal diagonal are zero, that 1s,

a, =0forall i>j
Lower Triangular Matrix: A square matrix A =[a, |is said to be lower triangular
matrix if all elements above the principal diagonal are zero, that is,

a.=0forall i< j

Triangular Matrix: A sguare matmx A 15 named as mangular matrx whether it s
upper triangular or lower triangular. For example, the matrices
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- 1 00 0
I &3
3 200 : y ; s
0 1 4(and & B are mangular matrices of order 3 and 4 respectively.
00 6
- -1 2 31

The first matrix is upper triangular while the

second 1s lower triangular. Diagonal matrices are both upper
4.7 Echelon and Reduced triangular and lower iriangular.

Echelon Forms of Matrices
In any non-zero row of a matrix, the first non-zero entry 1s called the leading entry of
that row.
Echelon Form of a Matrix
An mx pmatrix A is called in echelon form if:
(i) The number of zeros belore the leading entry is greater than the number zeros in
the preceding row.
in) Ewery non-zero row in A precedes every zero row (1f any).
{11} The first non-zero entry (or leading entry) in each row 15 1.

a1 =2 4 ] 2 =3 4
Thematrices |0 0 1 2 |and |0 0 1 2| arein echelon form
0 0 o 0 oo 0o 1

Reduced Echelon Form of a Matrix: An mxnmatrix 4 is said to be in reduced
(row) echelon form if the first non-zero entry (or leading entry) in & lies in ', then
all other entries of C'_I are FEro.
01 0 4] I
The matrices |0 0

2 00
0 1 Ofare in (row) reduced cehelon form.
oo o o 1

Example 8: Reduce -1 2 —3] to {row) echelon and reduced (row) echelon

1 3 2
form,
[2 3 -1 @9 ] -1 2 =3
Selution: {1 -1 2 -3, g~-&|2 3 -1 9
32 I 3 & |:’!. Pk 2
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B

1 =1 2 =3 -1 2 =3
Rlo 5 -5 15| RHARSE Rig | 1 3| Ly g
1R -3 i % %
o g w3 p| PHEIETN g 4o g
(1 =% 2 7] 1 0 1 0]
Blo 1 -1 3| v9m,»r  Blo 1 -1 3| g41n,0r
0 0 1 -] 0 0 1 -1
100 1
E ﬂ ] [} 2 H}'HI-I-{—I:IH%—I-R:
00 1 1 and &, + 1.7, = &
1 =1 2 -3] 1 0 0 1
Thus|O 1 =1 3 [ and |00 1 O 2 Jare (row) echelon and reduced (row)
0 0 1 1] 0 01 -1

echelon forms of the given matrix respectively.
Inverse of a Matrix: Let 4 be a non-singular matrix. If the application of elementary
row operations on A/ in succession reduces 4 to [, then the resulting matrix is /147",

2 5
Example 9: Find the inverse of the matrix A=[3 4 2
1 2

2
H||}||Ii|r||:|A|= 3

1

&
3 | = H-B—d)— 5(—6— 21— W(6— ) =—24+ 40— 2 = 40— 26=14
-2

3 s wh

As |A| # 0,50 4 15 non-singular.

[2 5 -] 00
Appending [, on the right ol the matrix 4, wehave [ 3 4 2 01 0
F 22 0 ¢ 1

Interchanging &, and R, we get,

0|

| —3|ByR=(-3IR + &,
0 -2 and f, + (=208 —» 1

Il 2 =2 0 0 1] 1 2 =2 1]
34 2 01 0|8|0 -2 8 o0
25 -1 100 0o 1 i o1
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By - % R, = R,. we get

Mathemarics m

[k 2.3 0 0 1 1 0 6 0 -2
01 -4 0 2 0o 1 -4 0 N T (EIO |R '
z 2 2 2 ard £ H{=2)R, = K
o1 3 l 0 -2 | 7
2 00 7 1 I L
L 2 2 |
|
By TRI—}HPwahmﬂ:
: | . 6 4 I
1 0 & : 0O | -2 I an: -—= =
| 3 i 7
0 1 —4 L R i R R i _i _L By R +(—6IR, = K|
2 2 7 13 " 7 |andR, +4R, >R,
1 | 1 | I
00 1 — — — fo0o: 2 = -
I; 7 14 21 | 7T M4 2 |
3 6 4 | is
7 7
. . 4 3 I
Thus, the inverse ol 415 | — —— ——
7 14 2
i 1L Gl
7 14 2

Rank of a Maitrix:

Let A be a non=zero matnx. I # 15 the number of non=sero rows

when it is reduced o the echelon form, then # is called the rank of the matrix 4.

1 -1 2 -3]
Example 10: Find the rank of the matrix (2 0 T =7
j 1 12 -11)
-1 2 =3 1 -1 2 3
B R1+ _2 .R RI
Solution: [2 0 7 =7 |flo 2 3 - }:],:3-_ { ;R:_}jé
|2 1 1z a1l |6 4 5 z|™EHE RS
1 -1 2 3] 1 -1 2 3
2 2 T ’ 3 3 - z :
|0 4 6 -2 O 0 0 0

As the number ol non-zero rows i1s 2 when the given matrix is reduced 1o echelon
form, therefore, the rank of the given matrix is 2,
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4.8 System of Non-Homogeneous Linear Equations

Three linear equations m three variables such as:

ax+bhy+ez =d, 1

a.x+hy+o,z =d, (i)

ax+by+ez =d, [
is called a system of non-homogeneous linear equations in the three vanables x, y and
z, if constant terms o, d, and d, are not all zero.
Consistent: A system of linear equations is said to be consistent if the system has a
unigue solution or it has infinitely many solutions.
Inconsistent: A system of linear equations is zaid to be inconsistent if the system has
no solution.
MNovwr we will solve the system of non-homogeneous Iimear equations with the help of
the following methods:
(i} Using reduced echelon form {11} Using matrix inversion method
(1) Using Cramer's rule
4.8.1 Reduced Echelon Form
There are following steps to solve a system ol non-homogeneous linear equations (1):
(1} Convert to augmented matrix

a b ¢ |d
i.e. a, b c|d,
R b, o |d,
(ii} Convert to reduced echelon form (it} Solve by back substitution
Example 11: Solve the following and explain a consistent and inconsistent system:
(i) 2x+5y—z=35 (i) x+y+2z= (i} x—yp+2z=
Jx+4p+2z=11 2x—=p+T7z=11 2x-6y+5z=7
x+2y—2z=-3 3x+5y+4z=-3 3x+5yp+dz=-73
. R
Solution: (i) The augmented matrix of the given systemis [3 4 2 : 11

1 2 -2 : -3

We apply the elementary row operations to the above matrix to reduce it to the
equivalent reduced (row) echelon form, that is.

2 5 =1: 5] [1 2 -2: -3
34 2 11!53 4 2 1 11| ByRoR
1 2 -2 -3] |25 -1 5
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1 2. 3 i 5 R N
Blo -2 8 ¢ 20|Byr+car—-r R0 2 8 © 20
2 8 #1385 LN R

Bym +(-21r K,

|
By —ER_, — I, we gel

6 1 45 <108l 1 4 L-mPrArENhE
o 1 3 11 Do 7 : 2] and R, +{-1R, = R,
10 6 & 17] o0 i -
Rlo 1 —4 ¢ -0leytror Blo1 o0 2|® R.I{ﬁ}ﬁl—}f;
00 13 ; o0 1 : 3| RAR SR,

- | =

Thus, the solution is x=-Lv=2andz=13, therefore the given system of linear
equations has unique solution and it is consistent.

i R N
(ii) The augmented matrix of the given systemis |2 =1 7 © 11
& A 3
EL s 3 G O
2 -1 75 1 |®lo =3 3 1 9| Adding (-2)R, to R, and (—3)R, to R,.
13 05 4t -3/ Jo 2 -2 -
[ & 2.3 2 1o 3 4
“'rE'gEL‘E [} |. _I 5_3 B::‘II _l_ﬁi_}.ﬁ' E [:" | _-I :_3 H}":".’I'l't—”.ﬂ_.—}.l"r
009 -2 _§ x i 00 0 ;0 and &, +{-2)R/, — &
The given system is reduced Lo equivalent system
xt+3z=4
poz=3
Oz=10
The equation 0z =0 is satisfied by any value of z.
From the first and second equations, we get
r=—3z+4 {a)
and p=z-3 (b}

As z is arbitrary, so we can find infinitely many values of x and v from equations (a)
and (k) or the given system, 15 satisfied by x=4-3f, v=1¢—3 and z = ¢ for any rcal
value of 1.

Thus, the given system has infinitely many solutions and it is consistent,
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1 -1 2 1
(iii) The augmented matrix of the systemis |2 _g 5 7
305 41 =3
[1 =12 7 1 I -1 2 & 1
2 -6 5 7|Rlo -4 1 ¢ 5|Adding (-2)R toR, and (-3R) to R,.
13 5 4 1 =3[ [0 8 -2 -6
We have,
[ 7 |
1 -1 2 i L 4 4
Bl wgiied By ‘g >gr B0 1 SIS RCA D F T
4 4 i f 4 4| and B+ (-BR. >R,
08 =2 : -6 0o 0 4

7 1
X+—z=——
4 -+
1 5
V——Z=——
4 4
z=4

The third equation Oz = 4has no solution, so the system as a whele has no solution.
Thus, the svstem is inconsistent.

m'lh’c sec that in the case of the system (1), the {row) mnk of the augmented matrix and the
coefticient matrix of the system is the same, that is, 3 which is equal to the number of the variables in
the sysiem (i),
Thus, we observe that a linear system 8 consistent and has a unique solution if the rank of the
coefficient matrix is the same as that of the augmented matrix of the system and equal to number of
vinriables,
In the case of the system (1), the rnk of the cocfficient mutnix 15 the same ay that of the augmented

matrix of the system buc it is 2 which is less than the number of variables in the system (ii).

Thus, we observe that a syslem is consistent and has infinilely many sclutions if the ranks of e
coellicient matna and the augmented malrix of the system are egual bul the rank is less thao the nember
of vanables in the system.

In the case of the system (i), we see that the rank of the coefficient matrix is not equal to the rank of
the augmented matrix of the system.

Thus, we observe thar a system is inconsistent if the vanks of the coefficient marrix and the augmented
miateix of the svslem are different.

4.8.2 Matrix Inversion Method
The matrix inversion method 15 a way to solve a system of linear equations using the
inverse of a matrix.
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n—2x+x, =-4
Example 12: Use matrix inversion method to solve the system 2x, —3x, + 2x,=-6
2x;+ 2041 =5

Solution: The matrix form of the given sysiem is

- <2 AIs] Ted
2 =3 2| x |=| -6
2 2 1l|lx] | 5]
or AX =58 1)
1 =2 1 Bt —4
Where A={2 -3 2|, X=| x.|and B=| -6
g 3 ] | x| 5
2 01 1L o< 3

I
As l4=[2 =3 2/ =0 1 0 ByR+(-2R &
i | 2 2.7
Expanding by R, we have
={—1}|i*3|I 1={I—2j=—l.llm[i5
2 1 ’
|.-!| # 0, 50 the mverse of A exists and (1) can be wrillen as

X=4"8 .11}
Now we find adj 4.
-7 2 10

Ay==T.4,=2,4A,=10,4, =4
A.=-lAd,=-04, =-14,=04,=1

Cofactors are

[-7 4 -]
S0 adj A= 2 -1 0
10 -6 1|
-7 4 -1 7 -4 1
and A_L=L ul:lj:i=l T -1 Ol=l=2 1 D
4] Mo =6 1] |-10 6 -1
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% -4 T =4 1|[-4] [-28+24+5
Thus| x, |=4'| 6 |=[-2 1 0| -6|=| 8-6+0 |, ie,

| x| 5 -0 6 —11|.5 A-36-5 |

S 1

X, |=| 2

ESlE!

Thus, the solution set is {{x,. x5, xy ) = (1. 2, -1)}

4.8.3 Cramer’s Rule
Consider the system of cquations,
dy X, + Xy X, =8
@ X, + X, dy X, =0, ¢ o)
thy X, + Gy Xy + iy X, = by |
These are three linear equations in three variablesx ,x,,x, with coefficients and

constant terms in the real field R, We write the above system of equations in matrix
form as;

AV = B . i)

i [ B

where A=la, ... X=| x, | and g=| b,
X b,

We know that the matrix eguation (2) can be written as; X = 478 ({if A" exists)

W have already proved that A o adj A

|4
_AI'I ‘4:| "’qil
and adj A=[4 1., = ‘ 4, A, A, (A =4A,)
LAy Ay Ay
A 1 | 4, 4, A, |4 Ay + Ayb, + A by
Thus | x, |= m Ay Ay Ay || b= H Ay + Ayl + A,
x'.! ‘ ‘41.'5 "411 "‘1:!.| '{:I'I ’ A“Il ! Ai!b_: ! .:4:{,;555
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[ A, B, + Ayby + A b, |
|4]
X
. Ab 4 Al + ALb,
LC., x |= z ot e S
: |4]
i
Ab 4 Ay + Ay
i |4 )
by oay,
bl u]] ﬁ!ﬁ
A +bA, +hA, |y an dy
Henece .::,:h! Tl PR ey T : {1}
A |Ai
a, h a;
a, B od,
o hd,+b.4,+bA, _ |, .b_.x iy (iv)
|4 A
t.T“ dl: Ifz:‘l
I . §
h..."il . + If}-_,.."i-\.-l + h-\..r'i" 'H_'\;l a11 h'\;
x_\ — 4 o - - o - - - - l'"":
A A

The method of solving the system with the help of results (iii), (iv) and (v) is often
referred to as Cramer’s Rule,

3x, +x, —x, =—4)
Example 13: Use Cramer’s rule to solve the system.  x +x, —2x, =—4[

- +2x,—x,=1 |

31 -l
Selution: Here |4|=[1 1 —2/=3(-1+4)-1(-1-2)-1.(2+1)
-1 2 -l
=9+3-3=9
-4 1 -l
4 | 3
Se g 1 z -1 =—4{—|+4}—H1:—2}—H—E—I}
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_-12-649 -8 _
9 9
L e
Y, e
r1=_] 1 - _ M4+ 2)+4-1-2)-1(1-4)
; 9 0
el
9 Y
I
1 1 -4
Lol 2 1] 3048)-10-4)-4@2+1) _27+3-12 18 _
3 g 4 9 9
Hence x=-lLx,=1x=2

Thus, the solution set 1s {(x,, x,, x; )} = {(-1, I, 2}}

4.9 System of Homogeneous Linear Equations

The system of follewing homogencous linear cquations:
ey X, F (o Xy + ity x, =0
lr ol 1)

By Xy + an Xy + 25,6, =0

I:‘TZ-II':"I:I f HH!"T! I ﬂ.i.i':i =']

is always satisfied by x, = 0,x, =0 and x, =1, 50 such a system is always consistent.

Trivial Solution: The solution (0, 0, 0} of the above homogeneous svstem is called

the trivial solution,

Non-Trivial Solution: Any other solution of system (i) other than the trivial solution

15 called a non-trivial solution.

4.9.1 Solution of System of Homogeneous Linear Equations by
Gaussian Elimination Method

Gaussian Elimination is a systematic method for solving systems of linear equations,

named after the German mathematician Carl Friedrich Gauss. It involves performing

a series of row operations on the system's augmented matrix to ransform it into row-

echelon form. Once the matrix is in this simplified form, the solution to the system

can he determinad through back substitution, This method is widely used due to its

efficiency and clarity in solving linear systems,
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Example 14: Solve the following svstem of equations by Gaussian Elimination
method:
xt2p+z=10
2x+ 3+ 4z=10

e+ 3pt+2z=10
Solution: The augmented matrix is
12 10
4=[2 3 4o
43 20
1 2 1|0
Blo -1 2|0|ByR,+(-2)R — R, and R, + (—4)R, —= R
_I:'II -3 =20
[1 2 1]o
= flo 1 -20|By(-DR, R,
_'[] -5 =20
o2 1o
= Rlo 1 -2|0|BvR +358. R,
0 0 -1200]
1 2 L0
= ®lo 1 =20 E_‘L'[_---I- ]R_: — R, (Rank of 4 = 3 = number of variables)
0 0 10 =

The matrx 15 in row-cchelon form.
By hack=substitution, from the third row, z = ().
from the second row:; v 2z=10
p=2X0)=0
y=0
From the first row, x + 2y + z =0, substituting y = 0 and x = 0, we have
x+2(MH+0=0
x={)
Thus, the system has only trivial solution, i.e., (v, y. z) = (0, 0, 0).




Matrices & Determinanis

<r> Mathematics m

Example 15: Solve the following system of equations using Gaussian Elimination

Method.
B+ X+ x5, =0
n— r+3x =0
rn+de - x =0
Solution: The argumented matrix is
11 1o
A, =1 -1 3|0
1 3 -J0
[1 1 1]0]
£lnp -2 20| By R,+(-DR > R, and R, +(-1)R — R}
0 -2 -20
(1 1 1|0
= Rlo 1 -0 By{—%]ﬁz—}ﬂ‘;
o 2 =20
11 1|0
= Rlop 1 1o By R, +(-2)R, - K, (Rank of 4 < number of
[0 o ofo
varables)

The matrix is in row-echelon form
Thus, the above system is reduced to the equivalent system of equations

Xy txytay =0 {i)
Xy—xy =0 {ii)
(e, =0
From (i) and {ii). we get
Xy =Ky — Xy {iii)
X, =1y
Substituting x, = x, in (iii), we get
X, =—%y—Xy =11,
—3 Xy = —2x, {iv)

As x, is arbitrary, s0 we can [ind infinitely many values ol x, and x, [rom (iii) and (iv)
or the system 1s salisfied by x, = =24, x, = t and x, = ¢ [or any value ol'/,
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From above examples we observe that:
Rule — I: Homogeneous system of linear equation has only trivial solution if

rank of 4 — number of variables.
Rule — 11: Homogeneous system ol linear equation has non-trivial solution if

rank of A4 < number of vanables.
4.10 Applications of Matrices in Real World
Matrices play a crucial role in solving real-world problems across various fields. In
graphic design, they help manipulate images through transformations like scaling,
rotation, and reflection. Data encryption and cryptography use matrices for secure
communication by encoding and decoding messages. In seismic analysis, engineers
use  matrices  to model and  predict  carthquake  wave  behavior.  Geometric
transtormations, such as translation and dilation, rely on matrices to modify shapes in
computer graphics, Additionally, social network analysis leverages matnices to
represent and analyze relationships between individuals, identifying key influencers
and connections in a network.
Transformation or Reflection Matrix 15 a mathematical tool that represents the
reflection of a pomt or object across a mirmor hine m a coordinate plane. [E5 a matrix
representation of 4 reflection transformation. In two dimensions, this pically means
rellecting across the x-axis, y=axis or @ ine such as v =x.

To reflect a matrix over the r-axis, we have multiply it by

A
Al

) . — -1 0
To reflect a matrix over the y-axis, we have multiply it by 01

]
I 0

Example 16: A triangle has the vertices (2, 3), B( 1, 4) and (3, -2). Find the
vertices of the reflected triangle over the x=axis by using transformation matrix.

To rellect a matrix over the line y = x, we have muluply it by

Solution: To reflect a point across a certain axis or line, we have multiply the point
as a column vector by the corresponding transformation matrix,

Here, to reflect the given points over the x-axis, we use the transformation matrix
0]
lo 1]
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Write the points as column matrices

SREREV]

1727 _[2+0] [2 —
0 1J3_rl—3_—3_ .

1 0} |-=1 —1+0 -1

The vertex £ of the reflected image = [ ] |i ]:[ } :[ }: =9
0 -1j] 4 0—4 —4
10

. ) 3 3-0 3
T'he vertex C" of the reflected image = [{} _]i‘ {_J = [[]+ E] = |:3-‘ =(3,2)

Thus, the vertices of the reflected triangle are A2, 3L B |, 4)and (3, 2).
Coding is the process of converting & message into a specific format using a code, A

The vertex A" of the reflected image =

=l

code 15 a system of symbols, words or signals used to represent other words or
meanings. 1U°s often used to hide the actual meaning of a message,

To decode a message, we multiply coded matrix by the inverse of the given matrix.

9

; 1
Example 17; Use matrix 4 = L 1h:- encode the message: ATTACK, where

letters A to 7 are corresponding to the numbers | to 26,
Soelution: Here
A B Lt [ E F (i H I i kK Li M
| 2 3 4 5 & 7 8 9 10 11 12 13
v

N 0 P Q R 3 T U W X Y Z
14 15 16 17 I8 19 20 21 22 23 24 25 26
Divide the letters of the message into groups of two.
AT TA CK

Assign Lhe numbers 1o these letlers and converl cach pair of numbers o 2 = 1

MAlIces,
Fal Fi 7 [20 [C 3
| _lhzn ’ A_!_ 1 ‘ ij: i

. ow PATT TR0
So, the message in 2 * | matrices is | ‘
20011 ||n

Now to encode, we multiply, on the left, each matrix of our message by the matrix .

w [l
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: . [41][22][ 25
5o, the desired coded message is [13-| ]{ }

[

-

IEEI'J_.FEE}+2_22
301 1__!_ﬁﬂ+l_ﬁl
U 2135 # 22] _[25
31 [ '[9 + 11 |20]

6120

V" EXERCISE 4.3 {4

Find the mverses of the followimg matnees by using row operations:

I 2 -3 [1 2 -1 1 6 2
(i) |0 -2 0 (i) |0 -2 8 (iiiy (2 13 O
=2 4 6. 10 2 B =1 ]
Find the rank of the following matrices:
M -1 3 1 (1 =2 3 (3 -1 3 0 1]
D |-2 -6 1 -1 (i) _21 H: 2 (iii) ; i 4] 23 ]2
3 1L 4 =2 _
= 1 = 2 9 43 =5 3.
Solve the following systems of limear equations by Cramer’s rule:
x4+ p—z=1 X +2x,-3x, =0 2x, —x, +x, =1
(i) x=p+2z=3 (i)  4x-x+x=5 p (i) x+2dx+2x,=2;
3x+2y4z= —2x,4+3x,+2x, =3 x,—2x, —x, =1

Solve the [ollowing systems of incar equations by matrix inversion method:

.x—Ey+:=—]1 11'|+,&':+3x_1—3l gy ]
(i) Jx+y-2z= (i) x+3x. =22, =0} (iii) 2x=z=1 Ir
p=z=1 —3x —x, +2x, =4l 2y=3z :—]j

Solve the following systems by reducing ther augmented matnices to the

echelon form and the reduced echelon forms:

X Fn 2 ==l x+2p+z=2 x +dx, +x, =2
M 2x+3ix+x=1 » (i) 2x+p+2z=3 (iii) 2% +x.—-2x.=9
S +4x,-3x, =1 Ix+Jy=2=T 3 +x,—x, =12
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f,

9.

Solve the following systems of homogeneous linear equations by using
Craussian elimination method:

x+4x-2z=0 x+dn+2x=0 n+2xn—x=0
(i) 2x+yp+5z=0 ) 2x+x-3x6=0p (i) x-—x+3x=0
dJx+2y+8z=0 3x 42z, ~4x,=0 2+ x,+4x,=0

A triangle has vertices at 4(4,1), #(-2.,5) and C{0,-3). Find the vertices of the
reflected triangle over the y-axis using a transformation matrix.
-5 0 0]

The point A is mapped to (30, 20, —5) by the scaling matrix P=| 0 =5 0

Find the coordinates of 4.
|Hint: IT'A is mapped 1o A" by scaling mairix P, then AF = 4'|

Find the equation of the image of the curve with equation ¢ = » under the

b
transformation with associated matrix { .

53 4
[1 @ 1]
Use the mainx 4 = |2 -1 1| 1o encode the message: KEEP IT UP, where
o0 1 2

letters A o Z are corresponding 1o the numbers 1 o 26.

117[25][2

I

Decode the message |[20)(10(] 14| that was encode using matrix

43[[41]] 41
[1 1 =1
A=11 0 ||, where the numbers | to 26 are comresponding to the letters
. I I



Partial Fractions

INTRODUCTION

We have learnt in the previous classes how to add two or more rational fractions into a
single rational fraction. For example,
1 2 e
+ —
=1 x+2 (x-1Hx+2)

2+ 1 +3=5.r*|513
L GEEN Ca=2  GEhNa=2

(i)

and (i1}

In this unit we shall leamn how to reverse the order in (1) and (1) that is to cxpress a
single rational function as a sum of two or more single rational functions which are
called Partial Fractions.

Expressing a rational function as a sum of partial fractions is called Partial Fraction

Resolution. It is an extremely valuable tool in the study of caleulus to decompose a
complex rational function into a sum of simpler fractions,

An open sentence formed by using the sign of equality *~' is called an equation. The
equations can be divided into the following iwo kinds:

Conditional equation: It 15 an equation in which two algebraic expressions are equal
for particular values of the vanable e.g.,

{a) 2y = 3 is a conditional equation and it is true

Note:

For simplicity, a conditional
equation is called an equation.

| taa

only if x=

Foost

(b}  x"+x—6=0is a conditional equation and it is
true for x = 2, =3 only.
Identity: It is an equation which holds good for all values of the variable e.g

fa) {a+b)x = ax+ bx 15 an identity and 1ts two sides are cqual for all values of x.

() (x+3x+H=x"+Tx+121s also an identi ty which is true for all values of x.

For convenience, the symbaol *“—" shall be used both for equation and identity.
T ——
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5.1 Rational Fraction
FPix)

An expression of the form m , where Pix) and O(x) are polynmmials in x with real
Nax

coctficients and (Nx) £ 0, is called a rational fraction. A rational fraction is of two

typos.

5.1.1 Proper Rational Fraction

A rational Tunction g‘% is called a Proper Rational Fraction if the degree of the

polynomial P} in the numerator is less than the degree of the polynomial £Nx) in the
3 -5 d Ox*
x+1re+d4 e

denominator, For example, are proper rational fractions or

proper fractions.

5.1.2 Improper Rational Fraction

; ) - .
A rational fraction E{ﬁ% is called an Improper Rational Fraction il the degree of the
polynomial P{x) in the numerator is equal to or greater than the degree of the
polynomial Q(x) in the denominatar,

e o (x—2%x 1) £-3 ) ¥ —xtdxd1
For cxample, Te—3° (k= D)(e+4)" 3x+1 AT Y

are improper rational fractions or improper fractions.
Any improper rational fraction can be reduced by division to a mixed form, consisting
of the sum of a polynomial and a proper rational fraction.

T+, : , . % mar
For example, w_7 s an improper rational fraction. By long division we
—= dr+64+——=
obtain — > Jrtbt x—Em
. : : i 2 3,\"-' - z
e, an improper ralional raction has ﬁ been reduced T3 Fbx
: . Gx+1

to the sum of a polynomial 3x + & and a proper rational =
fraction —7= . — 13

When a rational [raction is separated into partial fractions, the result is an identity;

e, 1t 1s true for all values of the varable in the domain of identity.
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The evaluation of the coefficients of the partial fractions is based on the following
theorem:

I two polvnomials are egual for oll valwes of the variable, then the
polynomials have same degree and the coefficients of like powers of the
variable in both the polynomialy must be eyual”.
For example,
If pr’ +gx’ —ax+b=2x"-3x" —4x+5, ¥xthenp=2,g=-3,a=4and b=35,
B sl
5.1.3 Resolution of a Rational Fraction :j" *!into Partial Fractions
LX)
Flx)

Following are the main points of resolving a rational fractiom 00x)
Nx

into partial

fractions:
(i) The degree of P{x) must be less than that of {Nx). If not, divide and work with
the remainder theorem.

(i} Factor the denominator Q{x)into its irreducible factor, write the rational
fraction into partial fractions,

(1i)  Mulliply the identity with the denominator of lefi hand side.
{1v}  FEguate the coetficients of like terms (powers of x).

(v)  Solve the resulting equations for the coefTicients.

We now discuss the following cases of partial fractions resolution,

Pix),

Case I: Resolution of into partial fractions when ()x) has only non-

(x)
repeated linear Factors:
The polynonual (Nx) may be wrillen as:
N =(x—m)(x—az) ... (x—an), where ay2a#.. . 2

Pix) 4 " A, o A,

x}) x-a x-a, x—d

is anidentity,

Where A1, Az, .... 4, are numbers to be found.
The method 15 explained by the following examples:

i
Example 1: Resolve Lt into partial fractions.
(x+3)x+4)
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%425 _ A B
{x+3x+4) x+3 x-+4

Solution:  Suppose

Multiplying both sides by (x + 3) {x + 4), we pet
Te+25 = Ax+4)+Bx+3)
= Txtl] Ax +44 + B + 38
= TS (A+Bix+44+38
this is an identity in x.

So, equating the coefficients of like powers of x we have
7 =4+ 8 and 25=44+738

Solving these equations, we get und .

Tx+25 4 3
Llence, = + :
(x+3z+d) =x+3 x+4
Alternative method
Tx+25 A B
Suppose = +
(x+3x+4) x+3 x+4
= TXx+25 =Ax+4)+Bx+3

As two sides of the identity are equal for all values of x,

Letusputx =—3 and x——4 it

For 4, puiting x + 3 = 0 L.e., ¥ = —3 we gel.
=21+25=A4(-3+4)
= A=4

For B, putting x + 4 = 0 i.e., x =— 4 we get,
—28+25=8(-4+3)

- B=13
Tx+25 4 3
Hence, y ;
(x+3x+4) x+3 x+4
—10x+13 , e
Example 2: Resolve x —itx inte Partial Fractions.

(x=1Hx" =5x+6)
Solution: The palynomial x* — Sx + 6 in the denominator can he factorized and its
[actors are x — 3 and x — 2.
#-10x+13 £ -10x+13
(x—1}x"—5x+6) (x—I}x—-2Hx-3)
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¥ =10x+13 A " o
Suppose e + +
{x=1(x=20x-3) x-1 x-2 x-3
=5 = 0+ 13=A(x=2)x— 3+ Blx—1)x=3)+ Cx - [)}x—2)

which 1s an idenlity in x.
For A, puttingx-3=0i.e,x= |, we get

(P = 10D+13 =A(1-2}1 -3+ B1 -1 -+ (1 -1}1-2)

= | =10+ 13 = A(=1) (=2) + B(0) (= 2} + C(0) (1)
4=24
A=2

For B, puthngx 2=01.¢c.,x=2, we gel

(2 = 10(2) + 13 = A(0) (2= 3) + BR-1)2-3) + €2 - 1) (0)

—- 4-20+ 13 =B(1){-1)
=% -3=-5
B=3

For C, pulling =3 =0ie., x =3, we gel
(F=10D 13- A3 -2+ BG-GB - 1(3-2)

- 9-30+13=C(2)(1)
=N ~8=2C
C=-4

; : 2 3 4
Hence partial fractions are: t
=1 x-2 x-3

2x'+x —x-3 . —
Example 3: Resolve CLS T into Partial Fractions.
X2x+3INx-1)
e It g xt=x=3 _ . I
Solution: -, ——— |§  dll 1IMproper .
H2x+30x-1) T —3.TI:I1I‘!+_1':—I—3-

fraction o, first transform it into mived form. :I-"'.r"' il

Denominator = x(2r — 3)x— 1) = 2 +2° - 3x 713

Dividing 2x* + 2" —x—3 by 2’ —* - 3x,
.
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we have
Quotient =1 and Remainder = 2x -3
¢ T EP L e : 2x-3
(2x+3)x-=1) 2x+3)x-1)
2x=3 A b C
Suppose - _ =—4% R
x(2x+3)x-1) x 2x+3 =x-1
— -3 =Ax+Nx-D+Bx}{x- D+ Cx) (2x+ 3)

which is an identity in x.

For A, putting x = {1 in the wentity, we get |4 =1

For B, putting 2x + 3=0 = x=— ; in the identity, we get B = i

For C, pulting x — 1 =0 = x =1 in the identity, we gel [C=—--

. . 1 K] 1
Hence partial fractions are:1 + — - -
x M2x+3) S5(x-1)

Case 11: When ({x) has repeated linear factors:

If the polynomial O{x) has a repeated linear factors (x — a)", # = 2 and & is @ positive
integer, then ) may be written as the following identity;
Qx)
Plx) A A, A,
= + =~ 4.+ -
Nx) {x=a) (x—a) {x—a)
where A1, Az, ..., 4. are numbers to be found.
The method is explained by the following examples:

=

y r+x-1, ) ,
Example 4: Resolve S into partial fractions.

¥

o : ' +x—1 A B (o

Solution: Suppose 12y = ¥+2+{x+1}1 +[1:+ 2
= Ftr=1=4x+2F+Bx+2+C (i)
= XHx-1=AC+4x+4)+Bx+2)+C (i)

For C, putting x + 2 =0, i.e., x = -2 in (i), we get
(=2PF 4+ {=2)= 1= A(D) + B{O) + C

= n=C
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Equating the coefficients of x* and x in (ii). we get
and | =44+ B

— l=4+8 = |H=3

Hence the partial fractions are; — ! - & — | !
x+2 (x+2)Y (x+2Y

Example 5: Resolve into partial fractions.

(x+ 17 (x* =1
Solution: Here denominator = (x+ 1¥ (x* — 1)
= R = 1) = e 1P (- 1)

1 1
(x+1FEE =1 (x+1V(x=1)
1 A B 7 D
Suppose — + +

ETaTr. 2] aal el il
= 1=Ax+ 1P +B+1P (x= D+ Clx— Dix+ D+ Dix-1)  ...(i)
= 1=A 432+ + DN+ B+ ¥ =x=1HCE = 1)~ Dx = 1)
= 1= {A+BWH3A+B+OWH3A — B+ DA - B - C - D) . (i)
Ford, puttingx—1=0 = x=1 in (1), we gel

1= A28 = 4=

#

For D, putting x + 1 =0 = x==1 in(i), we get

=BE1sly = |pa—t
2
Equating the coctlicients of x* and x* in (11), we get
0=A+R =  B=-A4 = E:-—;
% 1 e ok
and 0=34+B+C = (=—=-==+C = |C=-==
B B 4
Hence the partial fractions are:
LI S TR
8 8 4 2 1 I I I

e ! (x+1)° F{x+1}" Bx—1) Bx+D Hx+D' 2x+1)
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P EXERCISE 5.1

Resolve the following into partial fractions;
: 1 5 {(x*+1 2x+1
L ox—d C (e -1 T (- 2)x+ 3)
3x' —4x—35 . 6x +5x2-7 6 {(x=D{x=3(x-35)
(x=2)(x"+Tx+10) 2x"-x-1  (x=2Hx—4)x-6)
X+

[Hint; Put " =y to make factors of the denominator linear]

(x* + 502" + 5 )x" +d)

b T 53_2.

2e-35+4 o, S -2x+3 o, %

(x—1y ix+ 27 (x+17{x=1)
2x*

11 e
(x=3)x+2)

Case 111: When @(x) contains non-repeated irreducible quadratic factors
Definition: A quadratic factor is irredueible 1f 1t cannot be wnitten as the product of
two lincar factors with real cocfficients. For example, x° + x + 1 and x° + 3 arc
irreducible quadratic [actors.

. ; . ; ; Pi:
IT the polynomial {Nx) contains non-repeated irreducible quadratic Tactors then Qiti
X
may be written as the identity having partial fractions of the form:
Ax+ 8
,r— where 4 and 8 are the numbers to be found,
ax” + i+

The method is explained by the following examples:
Jx 11 . ; ;
Example 6: Resolve (=4 Dt 3) into partial fractions.

Jx-=11 :-Ir+ﬂ'+ C
(F+1x+D  2°+1  x+3

Solution: Suppose

= Jx-ll=(4dx+B) (x+3)+ (" + 1) (i)
= 3x-ll=(4+ 1+ (34 + B +(38+C) {ii)
For C,puttingx 1 3-0 —  x--13 in(i), we get
—9-11=Q@+1) = [c=-=2
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Equating the coefficients of x* and x in (ii), we get
0=A+C = A=-C = [4=2]
and 3=34+B= B=3-34 = B=3-6 = B=-3

: . 2x-3 2
[lence, the partial fractions are; —— - ——
4+l x+3
Example 7: Resaolve --:h- +-_IEI into partial fractions.
X +2x" +9

Solution: Here, denominator = x* + 2+ 9= (F+2x+3N(x-2x+3)
4% 4+ Bx o 4x% +8x
D420 29 (P 2x4+3)(x - 2x+3)
4x® + Bx Ax+ B Cx+D
Suppose s P = F— -
(X" +2x+3Wx"—2x+3) x» +2x+3 x"—2x+3
— Ayt Rr=(Ax+B) (' —2x+3)— (Cx+ D) (x* + 2x + 3)
= dei+8x={4d+O) ¥+ (=24 -B+2C+D)x*
+(34-2B+3C+2D)x+ 3B+ 3D (i)
which is an identity in x.
Equating the coefficients of ¥°, x*, x. 2" in (i), we have

D=4+0C {11}
A= 24 +E+ICHD (i)
8§=34-28+3C+2D {iv)
0=38+3D (v)

Solving (i1), (1ii). (iv) and (v), we get
[4=1],[8=2], [C=-1] and [D=-2]
xi+2 | —x—2
¥ +2x+3 xT-2x+3
Case 1V: When ((x) has repeated irreduocible gquadratic factors

Hence the partial fractions are:

If the polynomial {x) contains a repeated irreducible quadratic factors (ax” + bx + ¢)",

n = 2 and n 1s @ positive integer, then S:T:; may be written as the following identity:
(x
P(x)  Ax+B8B, A.x +8, Ax+B,

. +— e
Nx) ax +bx+c (ax"+bx+e) (ax* +bx+c)
where 4, B, Az, H. ..., 4., B, are numbers to be found. The method 15 explained
through the following example:
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4x*

m into partial fractions.
r+1)yix—

Example 8: Resolve
4 _Ax+ B (x+D E

Solution: Let — . = J L
x>+ (x-1N +1 {_\'1+]]‘ x—1

= 407 = (Ax+ M+ Dix—= D+ (Co+ D)x = 1)+ L+ 17 (i)
= 4= A+ B+ A+ B+ (A-B+C+2E) X
+(—A+B-C+Dyx+(-B-D+E) (ii)
For £, puttingx—1=0 = x=1 in (i), we get
4=E1+1)} = E=]

Equating the coefficients of x*, x°, ¥, x, in (ii), we get

O=A+E =  Ad=-F =
0=—Ad+B = B=A = [B=-1
d=A-B+C+2E
— C=4-4A~B-2E=4+1-1-2 = |[C=2
and l=—d+8-C+D
= D=d=RF¥ s+ l+d=2 = D=2
Hence partial fractions are: ;x;: + fif:lzj‘: + xl—l

V" EXERCISE 5.2

Resolve into partial fractions:

Ox—7 5 i +15 3 = +1
(X +1Mx+3) L4 245K -1 "ot
% 2x=5 Ay
4. B B B e
1-x* (x' + 2 (x-2) (2 +1F(1-x")




Sequences and Series

INTRODUCTION

In this unit, students will learn to analyze and solve problems involving arithmetic,
geometric, and harmonic sequences and series, including their real-world applications.
Learners will identify various sequence types. compute finite and infinite sums, and
utilize sigma notation. Additionally, they will explore practical scenarios such as motor
vehicle leasing, investment planming, and financial calculations, This unit also
emphasizes applying these concepts to diverse fields, including healthcare, finance,
and traffic modeling. Finally, Students will he able to solve both theoretical and real-
lite problems using sequences and series effectively.

Let us observe the following pattern of numbers.

@ 5L 9% (i) 6,12,24 48, ...
(iii) 4.2,0,-2,—4, ... L L
1" 9" 27" 81

In example (i), every number (except 3) is formed by adding 6 to the previous numbers.

Hence a specific pattern is folloswwed in the arrangement of these numbers, Similarly, in

example (ii), every number is obtained by multiplving the previous number by 2,

Similar cases are followed in example (iii} and (iv), When a set of numbers follows a

pattern and there 15 a clear rule for finding next number in the pattern, then we have

sequence as in above examples.

6.1 Sequence

A systematic arrangement of numbers according o a given rule is called a sequence.

The numbers in a sequence are called ils terms. We refer the lirst term ol a sequence

as a,, second term as a, and so on. The ™ term of a sequence is denoted by« , which

may also be referred to as the general term of the sequence, and the terms immediately

preceding it are called the (n — 1)st term, the {# — 2ind term and so on.

6.1.2 Finite and Infinite Sequences

. A sequence which consists of a finite number of terms is called a finite sequence.
For example, 2, 5, 8, 11, 14, 17, 20, 23 15 a fimite sequence of & terms.

2. A sequence which consists of an infimite number of terms s called an infinite
sequence. Forexample, 3, 10, 17, 24, 15 an infinite sequence, or more generally

as 3, 10, 17,24, ..., Te—4, ... to show how cach term was generated.
R —
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Note:  Ifa sequence is given, then we con find its o term and if the #  term of a sequence is given
then we can find the terms of the sequence,

Example 1: Find the first four terms of the sequences whose n  terms are given.
(i) aw=3n+1
Substituting # = 1, we have
e, =3(1)+1=4
Similarly, a,=32)+1=7
&=33+1=10
a,=34)+1=13
The first four terms of the sequence are 4, 7. 10, 13
(1) @e=3n" -3
Substituting n = 1, we have
g, =3H1P-3=d
Similarly, a,=3(2y-3=9
a, =330 -3=24
a, =34y -3=45
The first four terms of the sequence are (1, 9, 24, 45
Sequences of numbers which follow specific patterns are called progression.
Depending on the pattern, the progression is classified as follows.
(1)  Anthmelic progression {i1) Geomelric progression
(111) Harmonic progression

. Find the next four terms of each sequence.
() 12,1620, ... (i) 3,1,-1, ...
Write down the first three terms of each sequence,

I

() an=3n+3 () a = 4a —7 and a =3

; 3

(it} ay = (m—34n+ 1) (v} @ =-1 a, =

a,+2
(vl a =8-— 20 (vi} a =1, a, =(3a +2)
J4n
(vii} a, =(-2 " (wilida, =(=1)"T &
_ } o n+1) , i

3 An expression for the »™ triangular mumber is J “1 . Write down the 15

triangular numnber.
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Write down the ' term of each sequence.

- S T e T S R by 7.4,1,-2, ..
1ok E 1
CY i, =y d 15, 4 7 15,
(c) 2°'3 45 @
5. The " werm ol the sequence 2, 0, -2, —4, ... and the #* werm ol the sequence
—23, =20, —14, —186, .... are equal, hnd the value of #

6.2 Arithmetic Progression or Arithmetic Sequence (A.P.)
A sequence (g, is an arithmetic sequence or arithmetic progression (AP, 1T as — a1
15 the same number for all m & N and & > 1. The diftference @, — .1 (7 = 1) 1.e., the
difference of two conseeutive terms ol an AP, is called the commoen difference and
15 usually denoled by of.

Thus, an arithmetic progression 1s a sequence m which cach term atter the first s found
by adding a constant to the previous tenm. This constant 15 called common difference
of the anthmetic progression. ET
For example: Following sequences are AP, If 4, d,, d,, . d,,.. a6 in AP,
1y 1,3, 57, ... (common difference 15 2)
(n) 54,51, 4%, ... (common difference 15 =3}

OAn anthmetic progression with n terms can he

then d=a,-a=a —a,=..

where 4 iz # torm of the AP,

written as:
a,a+d, a+2d . [a+(n-1)d]
The a™ term of an arithmetic progression can be written as:
a,=a +(n—1)d
I —
(i) 1%, 2 3" and v™ terms of an A.P. are denoted by a,, a,, @, and a_ respectively,

{11 a" term from the end ofan 4.2, 15 {m — o+ 1™ ferm where “m* denotes the wital number of terms
ol un AP,

(111] Three numbers a, b, o are in AP ifamd only iF 2h=a + c.

(vl Any term {except fisst and last) in an AP, & cqual to half of the sum of two terms eguidistant
frevm it

(v} [Ifthe term g is unknown or not given, the nth term can be written as @ =a_ + in — mpd

(the subscript of the given term and coefficient of & sum to #)

The middle term of an A.P. depends upon the number of terms, e.g.,
iy L3579 1lisan AP withn-==6
(i) 1.3,5 7,9, 11, 13isan A.P. withn=7
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i.e., I the total number o terms of an ALP. 15 even. then there are two nuddle terms e,
™y

( n “n . -
| — JH; and | = + 1 J:h where n represent the number of terms. In example (i) 5, 7 are

| 2
two middle terms.

If the total nuwnber of terms of an AP, 15 odd, then there 15 only one middle term e,

i
(n+l \Iz'f: term. In example (ii) 7 is the only middle term.

2.

6.2.1 Selection of terms in AP

{1}  Three consecutive terms of an AP, can be chosen as a— o, a, o + o ora, a + d,
ora+2d
{11} Four conseculive term of an AP, may be writlen ke a — 3d, a —d. a + d, a + 3d
ora, a+ o, a+ 2d, a+ 3d.
(1i1) Last four consecutive terms if ¢ is the last term can be writlen as below:
3, -2, F —d, ¢
If each term of an AP, is increased or decreased, multiplied or divided by the same
non=zero number, then the resulting sequence is alsoan AP.ie., if @, a,, a,, ... a, are
n AP, then
(1) gtk etk . a Lk . arecalsoin AP with common differenee *d’.
(1) ka, ka., ... ka, .. arein A P. with common difference “kd”.

(iii) =i, ﬁ~ ,H—” .. &.Pare in A.P. common difference E

k& K k
{(iv) Term by term addition or subtraction of two arithmetic progressions is also an
AP L,

fa, a4y, .0,,.. and b, b, 8, ... 5,,... are in AP, then gt b, a, x b,

a, + b, ... arealso in AP,
Example 2: Find the general term and the eleventh term of the AP, whose first term
and the common difference are 2 and —3 respectively. Also write its first four terms.
Solution: Here, . =2, d=-3
We know that @ =a, +(n—1)d
=0 g, =2+{n-1)-3)=2-3n+3
o a =35 3n {i)

Thus, the general lerm ol the AP, is 5—3n
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Putting n =11 in (i}, we have

a, =5-3(11)
=5-33=-28%
We can find a,, a,. a, by puting n =2, 3, 4 in (1), that 15,
@, =3-32)=~1
a, =5-3(3)=—4

4, =5-X4)=~7
Hence, the first four terms of the sequence are: 2, -1, -4, -7.
Example 3: [ the 5" term of an 4.2 is 13 and 17" term is 49, find @, and a,, .

Solution: Given thatw, =13 and . =49

Putting n = 5in a, — a, + (n— 1), we have @, =a, +(5-1)d

a, =a, +4d
or 13=a +4d 1)
Alan a,=a +(17-1)d
or 49 = a, +16d
or A% = (o, +4d)+12d
or 49 =13+124 by (i)
= 12 =36 = d=3

From (i), a =13-4d =13-4{(3)=1
Thus a, =1+{13-1}3=37 and
a =1+{(n=-13=3n-2
Example 4: Find the number of terms inthe A.P. ; if a, =3, d=7and a_ =59
Solution: Using a_=a, +(r—1)d, we have
=3+(n 1)=7 Cooa =50 a=3und d=T)
or So=n—1})xT={n—-1)=8=n=9
Thus, the terms in the 4.P. are 9.
Example 5: If a_, =3n—11 find the »™ term of the sequence.
Solution: Replacing n by n + 2, we have
y+2—a=¥n+2-11
an—3nte 11

o= 3n—3
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I. Find the common difference and write the next two terms of each arithmetic

Sequence.
i) 9 16,23, .. (i) 5, 5+2,5+22....

2. Write the firsi three terms of cach arithmetic sequence, with given information.
(i) a,=2.d=13 (i) a =12,d=—-13

3. Finda,  anda, ifa =4+3n

4. Find the indicated term of each of the following arithmetic sequence.
() a=3d=T7.a,=14 Y [ e A T 1

5. The 18" term of a sequence is 367. The 30 term of the sequence is 499, How
many terw of this sequence are less than 10007

6. TIs 301 aterm ofthe A.P. ofthe 5. 11, 17, ...7

7. [If2x,x+8,3x+ | arein A.P., then find [he value of x.

8.  Which term of the A.P., 3, 8, 18, ... is 123,

9. Which term of the A.P., 30, 29.5, 29, 28.5, ... is the first negative term.

10. The 7" term and 21* terms of an AP, are 37 and 107 respectively. Find the A P.
and its 100" term.

1. ¢ : . I . : are in A.P.. the show that = 28 &

g—g b—¢ h—a a—¢  h—

12. How many numbers of three digits are divisible by 77
13. Find the 8" term from the end of' the AP, 8, 11, 14, ... 185,

-

N T | b

M 1l i ' '\I'
o i ; 3 1 17 ;
14, Find the »™ term of the progression | = | .| — | | = | + . Is the progression
Fi

an AP.? Is it infinite?

I5. Ifthe arithmetic progression 3, 10, 17, ... and 63, 63, 67, ... are such that their n™
terms are equal, then find the value of n.

16. 10 the p™ term of an AP, is ¢ and the ¢™ term is p, prove that its nth lerm is

(p+g—rl
s ] I : 2ae
17, If —: —and — are in A.P., show that A= &
a b C {4+ ¢
i 3 a—r
18. If —. P and are in A, P, show that the common difference 15 :
a c 2ae

19. If 4, and @_denotes two different terms of an AP, show that its o™ term s

_I:H_”| R—m ;
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200 If a8, 82 posifive and in AP, prove that

| I | =1

g f FELE F T = 3

-\bll.l':' f -.ulll':'_: -.I‘I'If.'_. T |“..II'JI: 3 |’.|'II 1“|I|':|'I T .l‘lll'.r_

21. TIf the roots of the equation (h—c)x* +[c—a)x+({a—h)=0 are equal, Show that
a, b, care in AP

22, [Ifthe sides of a right-angled triangle are in A.P,, find the ratio of its sides.

. | . s ¥ N §

23, If the n™ term of a propression is a linear expression in g, then prove that this
progression is an AP,

6.3 Arithmetic Mean (A.M.)

A mumber 4 is said o be the AM. between the two numbers ¢ and & 1if ., A, b are in
AP, If 4 is the common difference of this AP, thend o —dand b 4 = 4.

Thus A-a=b-A
& g B 114, 4, 4, ... 4, are said 10 be n
e U=ath A Ms. between two numbers @ and b, then
g+ h A Ay Ay voen A, Bare in AP,
= A= 3

Example 6: Find three A Ms. between 2 and 342
Solution: Let A, A,, 4, be three A.Ms, between /2 and 32, Then,

N2, A, A, A, 3W72 arcin 4P

Here ﬂl=\5. a, =32 using a.=a +(3-1)d or Sq'r:=~.|"i+4a’

— d = 24— { =
T2 G
Now 4 =a+d= \l"5+—=2 ]:

—(
q
e d=— e
4+d=prp =
4+1
A:i =A2+d=1ﬁ+ﬁ E

Therefore, ; 57, are the three A.Ms, between /2 and 3+/2 .
Ak
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(]

[

6.

P~ EXERCISE 6.3 4

Find A M. between the given numbers

- : : 2 2
(D 2+43, 2% (i} (w+b) . (a-b)
16, 11, 16 are three A M. between o and b, find a and b
2 15
Inzert five A.Ms. hetween m,ﬁ angd —-=.
E
W
Ihe AM. of two numbers 18 7 and their product 15 45. Find the numbers.
: P : =g
If n arithmetic means are inserted between g and b, prove that d = —] , where
II|I .
d 15 the common difference.
If A is the AM. between q and b, prove that (a— A) +[4-b) = - (a=b) .
et
T - e , .
For what value of n, e the A.M. between ¢ and b, where a=h
a8 -+

6.4 Series

The sum of the terms of a sequence is called the series of the corresponding sequence.

Forexample, | +2 + 3+ ... + n is a finite series of first » natural numbers.
The sum of first # terms of series is denoted by S..

Wewrnite, Sy=m + a1+ - + i
Here, S =a

=+
Ji=g ta+as

Se=a) +a1+ay + .- + qqis known as n™ partial sum.

The sum of the terms of an arithmetic sequence is called an arithmetic series.
To develop a formuala for the sum of any arithmetic serics, consider

S =a +{a, +d)+(a +2d)+ - + (F=2dy+(f =)+ { (where a, =)
§ =L+ {E—d)+(£+2d)+ -+ (a +2d)+ (a, +d)+ q,

Thus, 28 =(a +f)+(a +)+(a, +)= = (o, + ) +{a + )+ {a, + 1)

But

= nla, +£) [ We have nterms of (a, + ()]
Il
S'" ey El::ﬂll Ifj
f=a +(n—1 (Substitute£in 5 )

Thus, 5, = glu._ ba, 4+ (n=1)d]= E[Ea, (=1
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Example 7: Find the sum of the first 100 REEEII

positive integers. The sum 8, of the first # terms of an
Solution: The seriesis 1 +2 + 3 + ... + 100,

Since vou can see that o =1a, =100 and

anthmetic serics 15 given by

. O | 5 = Riza vitn-nd] e 5 =@ wa
d = |, you can use either sum formula for this & 2

arithmetic series.

Method-1 Method-2
S“:E{ffl +-H"]' S"=£E2’”I+Eﬂ_l]d]
2 A
100 100
St —Tﬂ + 1) i —T|2{1}+[1UU‘—]]1|
Sy = 30(101) 8 = 300101)
S = 3050 &g = 3030
Example 8: Find the 19" term and the partial sum of 19 terms of the arithmetic series:

-
St i,
3 P

raa ra

Solution: Here, 0, ~2and d~ a,—a, =

[

Using a, = a, +(n—1)d

a, = 24(19-1)=

."3“.
= 2+H§L— R Ty i
2
Using 5 =

-

la,+a)

bl = B -~ |

g 1 58
Sy~ (2429)= (D=

Example 9: Find the arithmetic series if its fifth term is 19 and §, = a, +1.
Solution: Given that a, =19, that is,

iy +dd =19 (i)
Using the other given condition, we have

5, = %[2:{1 +{4-1)d]=a,+1
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or da +6d = a, +8d4 +1
Ja -1 =24
Substituting 24 = 3a, —1in (1), we have
a+ 250, -1) =19
or Ta =21 = a=3

From (i), we have,
d4d = 19-a, =19-3=16

2 d =4
Thus, the series is 3 + 7+ 11+ 15+19 + ...
Example 10: How many terms of the series 9@ 6 3 + 10— ... amounts to 667
Solution: Here, g, =-9 andd=3as 6 ([ 9)=3.
Let § =66

Using §, = gizu._ +{n=1], we have

66 = g[zi—g]lﬂn—l}}]

or 132=n[3n-21] = 4H=nr-T)
or m—=Tn—44=0

L _TE49+176

2
_Tx4225 T 1S
F. 2

But n cannot be negative in this case, so w = 11, that is, the sum of eleven terms amount
to 66,
Example 11: Find the [irst three terms ol an arithmetic series in which ¢, =9, a_=103
and 5 =741,
Solution:  Step — I: Since we know «,, a_and 5, Step — 1I: Find o

= n=11—-4

a, =a +{n=1)d

Use § = E{al +a,) to find A
%5 105 =9+(13—1)d

741="(9.4105) Hled
2 8=d

T4l =57n

13=n
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I
v

LR

6.

b ]

L.
11.

14,
18-

16.

Step — II: Use d to determine a, anda,.
a,=9+8=17, a,=17+8=125
The first three terms are 9, 17 and 23,

¥V EXERCISE 6.4 4

Sum the series:

() 3+6+9+..4ay ) el e,

Vs V5 '

Find §_ for each arithmetic series:
(1) a;=4,n=25 a~=100 (1) ar=40,n=20, d=-3
(it} =52 n=21d=-4
Find a; [or artbmetic seres; o =8, n=19, 5 =1786
How many terms of the series; 96 + 93 + 90+ ... amount to 1071,
I the three sides of a right-angled triangle of perimeter equal to 36cm are in ALP.
find them.
sum the series
(i) 3+5-T7+9+11-13+15+17-19+ _._ to 3n terms.
(i) 1+4-T+10+13-16+19+22-25+ .., to In terms,
Find the sum of 20 terms of the series whose " term is 3r + |.
The 5™ and 9'" term of an A.P. are 11 and |7 respectively. Find the sum of 20
LETTNS.
Obtain the sum of all integers in the first 1000 positive integers which are neither
divisible by 3 nor by 2.
The sum of 9 terms of an 4 P. is 171 and its eighth term is 31. Find the series.
The 5" term of an arithmetic progression is 21 and the sum of first six terms is
90. Find the 18" term.
The sum ol three numbers inoan 4.2, 18 24 and their product 1s 440, Find the
numbers.
The lirst four terms of an 4., are 2, 6, 10 and 14. I'ind the least number of terms
needed so thal the sum of the terms is greater than 2000,
Find four numbers in A.F, whose sum is 32 and the sum of whose squares is 276,
Find the five numbers in A.P. whose sum is 25 and the sum of whose squares is
[ 35,

1 1

. .E - ¥ ) 1 .
If : " are in AP, thon show that a”, 5, ¢ arc m A.F.
a+h c+a b+
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[7. The sum of the first four terms of an 4.F 18 56. The sum of the last four terms 15
[ 12, I ats first term s 11, then find number of terms,
185, The first term of an AP, i5 a, the second term is & and the last term 15 e, show that

) b+ e=2allc+a)
the sum of AP, is 1 al !
Nh—a)

19.  Show that the sum of n A.Ms, between ¢ and & is n times the single A.M. between
them.

6.5 Geometric Progression (G.P.)

A geometric progression or geomelric sequence is a sequence in which each term after
the first 15 found by multiplying the previous term by a nonzere constant r called
common ratio,

Like arithmetic progression, we can label the ferms of a geometric sequence as
a,, &y, a, and so on, ¢ <0 . The #™ term is a_and the previous erm is «_,. So,

a,=r{a,_}. Thus, r= al . That is, the common ratio can be found by dividing any
n—=l

term by its previous term.

6.5.1 Rule for mnth term of a G.P.

Each term after the first term is an » multiple of its preceding term. Thus, we have,

21
d, =d¥=dar

“
2 LR |
a, =a,r=(arjr=ar =ar

a4 = ﬂj":(awz:"" =ﬂ|"'5 :ﬂl"l1

a, =ar" " which is the general term of a G.P.

6.5.2 Properties of G.P.
(iy  Tfeach term of a G.P. is multiplied or divided by the same non-zero number, then
the resulting sequence isalso a G 1e.if g.g..8,. ... g,..arem &GP and kisa

non=#ero number, then
(a) ke, ke, ke., .., kg, ... arein G.P.

(b) 21, B: B B arealsoin GP.
E ok Ok k
{1i) The reciprocals of the term of a G.P. also form a G.P. i.e.. if a, b, ¢ are in G.P,,

then l l._, l are also in G.P.
a b
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(1ii) If each term of a G.P. be raised to the same power, the resulting numbers also
form a G.P. i.e..if a, b, c are in (3. P., then a”, &", ¢" are also in G.P.
(iv} Three numbers a, b, ¢ are in G.P. if and only il & = ac.

{v) Ilthe scl ol positive numbers @, o., ¢y,..., @_,... are in G.P., then log a, fog a,.
fog dyy o Fog a,, ... are also in AP, and vice-versa.

(vi) Term by term multiplication or division of two G.Ps. are also in G.P. i.e.,
ifa,, ¢, 8;..., ¢, and b, b, b, ... .0, arein G.P. then a4, a,b,, a.b,, ..., and
%:, ;—:, %, ... are also m P
Example 12: Find the eighth term ol a geometric sequence lor which a, = -3 and
r——2.
Solution: Here, ¢, ==3, r==2,n=8

. . L
o, o=aer

a, = (-3)- (2"

a, = (—3)- (—128)

i, = 384
Example 13: Wrile an cquation for the ath term of the geometric sequence
3,12, 48, 192, ..
Solution: Here a =3, r=4

1

a,=da-r
R B
Example 14: Find the tenth term of a geometric sequence for which a, = 108 and r = 3.
Solution: Step 1: Find the valuc of o, Step 2: Find a,,,.
Mete,m=4, r=3, a, =10% Here,n=10, a,=4,r=3
g, =a-+"" a, =a-r
a,=a-3"" a, =431
108=27q, a,, = 78,732
d=g
Example 15: Find the 5™ term of the G.P. 3, 6. 12, ...
Solution: Here ¢ =13, a, =0, a, =12, therefore, r = :‘: = Z =g
|
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<>
Using a_=a#"" for n=5, we have

a,=ar'=32"=3.2" =48

e : -
Example 16: Find a, if a, % and a7=% ofa G.I.

T4 [

Solution: To find a, we have to find a; and 7.

Using o =arm
HEk] ; B
g =ar " =ar S0 ar =—
27
and EI-_.=E.E|F'T I=ﬂ|re' . ED f;1rr'=ﬁ
729
—6
= PO
Thus, a—Tfﬂ——E o r]—'—z]
a, 8 27 L3
27
2
= ==
3
Pul r* = —— in (ii), 1o obtain a, that is,
[ & 8
|| s e =
374 27

Now putiing @ =—1 and r=%2 in (i), we get,

(i}

(1i)

(1i1)

f.. i '“'l"'-EI :I

[. _—3_ f
{'f_1_ ﬂlr J

(taking only real value of r)

f:,,={—1}[—§Jﬁ ;{—I}f—l}""-{g]l _{—l}"[é} for n =1,

&
-+

P EXERCISE 6.5 4

. : : <L & =3

I.  Find the 6" term of the G.P.: -6, -3, "

2. Find the 8" term of the sequence, 3, 3%, 3, ..

3. The n" terms of the sequences [, 2, 4, &, ... and 256, 128, 64, ... are equal. Find

the wvalue of ».

4. Find the first five terms of each sequence described;

G) =24, r—% (i)

a, =379, r——%
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5. Findthe 12" termof | +4, 24, -2+ 24, ..."

6. Ifthe 4" and 9™ term of a G.P. are 54 and 13122 respectively. Find the G.P. Also
find its general term.

Ifa, b, ¢, dare in G.T",, prove that;

(1) a—h b—c, c—darcinGP,

(i) & -b, b ¢, e’ =d" arein G.P.

(iii) @' +h°, b+, e’ +d arein G.P.

8. If(p+ )" term of a G.P. be m and (p — ¢)

™ term be #, then find the p™ term

9. Find three consecutive numbers in G.P. whose sum is 26 and their product 15 216.

th

10, The 3 term of a G.P. is the square of 1™ term. 1f the 2" term is 9 then find the 6

11,
9. | S— ——
11. If —, —and — are in G.P. Show thal the common ratio is =, 1—.
a b iy Ve
12, 1f the numbers 1, 4 and 3 are subtracted from three consecutive terms of an AP,

the resulting numbers are in G.P. Find the original numbers if their sum 1s 21
13, [If three consecutive numbers in AP, are increased by 1, 4, 15 respectively, the
resulting numbiers are in G.P. Find the original numbers if their sum is 6.

15. 1f p', " terms of & G.P. are g and p respectively, show tha (p + ¢)™" term is
(4" + p* ).

16, Wa Za+2,3a+3, ... are mG.P., then find the hrith ternm.

6.6 Geometric Mean (G.M.)

A number & is said to be a geometric mean (.. ) between two numbers o and b if a,
&, bare in G.” Therefore,

G_b B oo ..o onnidiobon
i (s Cr.Ms. between two numbers a and b if
=, 7 =ab iy G, Gy e, G Fare inGLP.

= L) =i«,|'ra_b
6.6.1 Relation Between AM. and G.M.

If 4 and & are respectively A.M. and G.M. between two numbers ¢ and & i.e.,

a+h

A= and ¢ =+Jah, then

() A=Gifazb (i) A=Gifa=b
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Example 17: Insert three G.Ms between 2 and %

Solution: Let G,. G,, C, be three G.Ms. between 2 and % . Therefore

1 e 1
2, G, G, 0, E are 1 (r. P Here a, =2, a, - and m=5
using a, =a,r""" we have
a=ar ' ie, a =ar (1)

Now substituting the values of @, and a, in (i) we have

T s . i

E—E.r' orr e {11}
Taking square root of (i1), we get

P=t :

-

We have, r1=l or r3=—l=I—  =1=i)

2 & 2
— r=% or r=4_—|:

Sl
[

When »r=

— - —
i
™)
[}
d
I
[ o]
e
Sl
e —
1
o
-
o
I
[ g
==

When = = . then :1(
When r=——, then G, =2(

. , w2 s

iy : i i
— |=2.6 =:f— =-1, G,=2|—=

2 by 2) k] “Jri

2| |!I

-1
'\n."JIIE.J

When +r=—, then G, = 2(

7 A b R )

The real values of » are nswally taken but hene other cases are considercd to widen the outlook

of the students.

P EXERCISE 6.6 4

1. Find G.M. between:
(i) —2and8¥ (1) —2iand & (i11) 6 and 9
Inserl four real geometne means between 3 and 9.

e

between x and v 15 less than their arithmetic mean.

If hoth x and » are positive distinct real numbers, show that the geometric mean
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. ! a’ +a i ; o
4,  For what value of w. i5 the positive geometric mean between a and H7
n I s
a +

L

The A.M. ol two positive inlegral numbers exceeds their (posiive) M. by 2 and
their sum 15 20, [ind the numbers.

6. The 4.M between two numbers is 5 and their (positive) G is 4. Find the
numbers.

The arithmetic mean between two positive numbers ¢ and b is double their
geometric mean. Prove that a:b=2++3:2-43

8. If one geometric mean G and two arithmetic means p and g be inserted between

two positive numbers, show that 7 ={2p~-g)(29-p)

6.7 Geometric Series

Suppose you e-mail an Tslamic quote to three friends on Monday. Fach of those friends
send it to three of their friends on Tuesday. Each person who receives the quote on
Tuesday sends it to three more people on Wednesday and so on.

LI X

%---'I'uﬁday--------

@1 Wfd-'l'l':&dﬂ}' e w il i il ‘--.h afty ol i e i i & ol i ol - T .&.

Naotice that every day, the number of people who read your Islamic quote 1s three times
the number that read 1t the day before. By Sunday, the number of people, including
yoursell, who have read the quote is 1 + 3+ 9+ 27 + 81 + 243 + 729 + 2187 or 3280.
The numbers 1, 3, 9, 27, 81, 243, 729 and 2187 form a geometric sequence in which
a; =1 and r = 3. The indicated sum of the numbers in the sequence. | +3 +9 + 27 +

Bl + 243 + 729 + 2187 is called a geometric series.

; ; : afl-r")
The sum of a geometric progression can be written as: 8, = '{1—, rel
-r
To develop a formula for the sum of any geometric series, consider
S =a+ar+ari= . +ar’ T+ar’ Ceagrt! (1)
5. = arvartttar ot  varm e ar” {i1)
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Subtracting (i) {rom (i), we get EM

S -¢S =a-a" Ifr=1,then § =na,
S(=-r)=a(l-r")

|‘_;" _—':?I{l_r }1 J“?‘i
k=r

Example 18: Find the sum of n terms of the geometric series if a, = (—3}|(
\

|
\-__,:

Solution: We can write {-—3}[ % TEHZ

I.-'zx.l 2 =1 I.-- E.M.H(Eﬁ'.'—l )
B2z =l-= |2 . thatis,
3N

s 1 R 505
.,-' ﬁ“.r’g"'
U sAs)
([ 62y 2
Identifying L——JL— with ar"™', we have g =—— and r==
NS 3
_g{l—fi;‘; J
Thus, S, L P WL
1—!" i_E

LTl
P EXERCISE 6.7 4

s . : I
I.  Find the sum of first 15 terms of the geometric sequence |, —. iy
3

2. The 3™ term of a G.P. is 16 and the 6™ term is —128. Find the first term and the
sum of the first seven terms.

3 Sum to # terms the series:
i) 02+022+0222+ .. () 3+33+333+-.-

4. Jum to # terms the series

() 1+(a—M+{a +ab+ )+ (0" +ab+abd + b))+ .-
(i) w1 R KR
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& . 3 ; (17
5 Sum the series 24 (1 -0 | = i o b0 B terims,
-I i

&, Show that the ratio of the sum of first & terms of a G.P. to the sum of terms from

(n+ 1" to (269" term is — ., where 7 is the common ratio of (1P

6.8 Arithmetico-Geometric Progression (A.G.P.)
Suppose @, gy, @y o0 sy, .. i8S a0 AP, and by, by, by, ..., b, ... is a G.P. then the

sequence formed by multiplving the corresponding terms of AP, and G.P., that is, a b,

a,bh,, ah,, ..., a ... 15 said to be an arithmetico-geometric sequence.

Consideran AP .a a+d a+2d .., ja+{n—1)d} and a G.P_ b, br, b, .. b
where F=1.
Multplying the corresponding terms of AP, and G.P., we gel an arithmetico-
geometric sequence
ab, (g + d¥br, (a + 2d)b7, ..., fa+ (n— 1)t b~
The »'™ term of arithmetico-geometric sequence is product of #™ term of A.P. and n"
term of G.P. Thus, ™ term of such sequence has the form
fa+(n— Ddipr” !
6.8.1 Arithmetico-Geometric Series
Sum of the terms of arithmetico-geometric sequence is called arithmetico-geometric
series. Thus, arithmetico-geometric series has the form
ab + (g + dbr + (a + 2 + o + fa+ (n— 1 b

Sum of nih Terms of Arithmetico-Geometric Series

Let  Sp=ab + (a+ dybr + (a +2dyb? + o, + [+ (n— 1)ed)br ! (i}
Then r§_= abr+ (g +dyb” + -+ [a+ (n - Dd)b" '+ [a+ (0 Dd]b" (i)
Subtracting (i1) {rom (i), we get
(1 AS —abt[dbrtdb+ - +db" '] [at(n Ddb”
-1 — |
ab M —[a+ (n—Ldlbr”
-
EIL.LUTSE EORVSSRILP T
I—¥ l=r

5 = b . edbr B i _[u+{:r—l}d]£rr"
" 1-¢ (I-rY (—-r)* 1—r

which s the reguired sum of the n terms of anthmetico-geometric serics,

(1)
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6.8.2 Sum to Infinity of Arithmetico-Geometric Series

Iflrl =1, then ¥ = O and m® — Qasn — =

ab } dhbr

I—r (l-=r)

which is the required sum to infinity of arithmetico-geometric series,

Therelore, (1) reduces w0 §, =

Example 19: Sum the series upto 7 terms: 2+1 +3-2+ 44 + 5-8— ..

Solution: Let§,=2-1+32+42°~52% .. tonterms
nthtermof the AP, 2,3.4, 5, ...isaq, +(n—1Md =2+ (n—1)1)
=2+n—1
=ntl
nth term of the G.P., 1,2, 25, 27, s a'lr"’" =137={=0sz]
S0, S =21+32A 4:232 4 528+ oA (n+1)27 (1)

Muliiplying both sides by common ratio of G.P., we get
A 32 +42+54+ = (H]E""" +in+ 112" (11}
Subtracting (ii) from (i), we get
S —285 =2-1-(3-2)2+(@=3)-2+(5-4)2+ _+(n+1-m2""'—(n+1)2"
S, =Z1+ 124+ 32+ 2+ 12 — (o + 1)2°
-5 =2+{2+2242 + 42— (m+ 12"

Apaa 1 _
-8=24 ”[22 I {n+ )2
S =242 2 gm0
—& =l
& =nl"

Example 20:  Sum the series upto nterms: 31 + 42+ 522+ 62 + ...
Solution: Let § =3-1 +4-2+522 523

nthterm of the AP, 3,4,5,6, ...isa Hn— 1 =3 +(n - 1)1)

=34n-1
=n+2
nth term of the G.P., 1,2, 22, 2, isa ' =1(2)* ' = 27!
S0, 5. =31+42+52+62P+. +n+1)2" (1)
Multiplying hoth sides by common ratio of G.I, we get
28 =324+ 4 B 5 ook (npb DT £ {nt 1120 {11)
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Subtracting (ii) from (i), we get

S —28 =32+(4-3)2+(5-9 2+ (6-5)P+.. .+ (n+2-
—8 =31+12+124+124+  +12_(pn+2)2"

5 =3+2-+2+ .+ " m+D2"
..I_
5“=3+M (n+2)2"
S T i i S s
-8 =1+2"—n2"-22"=1 +(l —n -2)2"
-8 =1+(-n=-12"
8, =1+ 1)

- 4 6 &
Example 21: Sum the series upto n terms: E+_+_+E+"'

4 & &
Solution: Let§ = 24—+ —4+—+... tonterms
3 9 27

nth term of the AP, 2. 4,6, 8, ...1s =2+ ({n—102)

=24+2m-2=2n
, A O (T - i AR
mthterm of the G.P., L -, =, —. wi5(1)| = | =—
3°9°27 |3 K3
3
86, STl o BB (i)
! 3 9 27 3
1, 2 4 6 2n=2 2n it
gk T e Sty W B0 e f1)
3 ¥ 8 27 3 3
Subtracting (11) frowm (1), we get
(1 oy 452 64 B-6. . w243 2n
L3S T 3 e 3 3
2
:Sn;2+ E+E+i... ...+% _E_H
3 j 9 27 %, ol
2{1_{@*"1
ES =2+ —3- 2 ’l —2—”
3 i1 3
3

Mathemarics m
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:2| 2 3-"
3
w1 I,-' W
=2+1—|1] —En;l
\j \3,-
Fy n=1 ]
E1».1,=3—|1' —En(l
3) V3
: I:} 3 ; o1 l,-'I.\.lﬂ
- als) )

Example 22: Find the sum to n terms of the series: 1 + 2x + 3x° + 4 + ... where

x# LI x| =< 1, sum the series to infinity.
Solution:  LetS, =1+2r+3x% +4x + .. +mx"!

x o =x+ 28 +38 + L+ =D
Subtracting (ii) from (i), we get

(1 x}."':'ﬂ=f+x+rj+13+___+_r":' nx®

1= ") i
= — X
l=x

_ 3= af =l —x)x"

l—x

B |_r1r|| (= ”__l_ll +]u_||-|

I—x
5. 2 1% |'|_I_ el
(155, 1 fu+1)x" +nx
l—x
_ I={n+Dx" + ™
. (1= x)
If el << 1, thenx®" =0 asn —
R B
i1 xy

2}
()]
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¥ EXERCISE 6.8 4

I.  Find the 8" term of the arithmetico-geometric sequence, where the arithmetic part
s 1,4.7

. and the geomeinic part 1s 5, 10, 20, ...

2. Find the 2" tenm of the arithmetic-geometrie sequence, where the arithmetic part
183, 7, 11, ... and the geometne parts 2, 6,18, ...
3. Consider the arithmetico-geometric sequence defined by arithmetic part:
I .
: o | 1) - th g s
@, =2n+3 and geomettic part &, _L_;{ -3} . Find the »™ term and the sum of

tirst three terms of the anthmetico-geometne sequence.
4. Sum o # terms the following senes:

() 1'2+34+58+T16+... (i) 23+43+63"+8-39+
ST T B ; 5 5 7
) B o B 6 s e e
[: -} 4 4? _q_.‘- { } 5 5_ 5_‘
(v) 1+i+z+ﬂ+_._

3 8 27

5. Sum the following infinite series:

(1) 1+§+E+E+.__ {11} 2+E+§+1—1+

2 4 8 3 9 &7

I | 1

6. Show that 27- 4% - #5- 161 .00 =4

7. Show that V4 - ¥16 - Y64 - 9256 .0 =16

®.  Sum to # terms the series 24+ 4c 463 +8x" 4. where v =21

. : 2l (Il 2l Y
9. Find the sum to » terms of the series: +3] +5 — |+
2n—-1 \2n-1) Zn—1 )}
: S I W o :
10. Prove that: 1+2| 1+— l'—3| I+— | + - tonterms —
% i \ H
I1. Sum the series to n terms 2+ 5x+8x” +11x" +-- and deduce the sum to infinity

I-r. x| = I .

6.9 Harmonic Progression (H.P.)

A sequence of numbers is called a Harmonic Sequence or Harmonic Progression if the
: i s : ; 111.
reciprocals of its terms are in anthmetic progression. The sequence 1, 3 i i% a

harmonic sequence since their reciprocals 1, 3, 3, 7 are in A.P.




Sequences and Series <l> Mathematics m

Remember that the reciprocal of zero is not defined, so zero cannot be the term of a
harmonic sequence.
The general form of a harmonic sequence 15 taken as:
I | 1 . 1
. ; 2o whose n™ term iy ——
a, o 4+d o+ 2d (- 1d
. . : 1 1 1
Example 23: Find the #" and 8" terms of HP.: —, —, —,
2 5B
Solution: The reciprocals of the terms of the sequence,

are 2, 5.8, ...

"

L R

LW
258
The numbers 2, 5, 8, ... arein A.P., So

g =2and =5 2=3
Putting these values m a, = a, +{n—1)d, we have

a, =2+{n-1)3

=3n -1
Thus, the n™ term of the given sequence = LI and substituting n = # in — : ,
a, In—1 In—1

; e 1 |

we get the 8™ term of the given H.P, which is =
Ix8-1 23
Allernatively, a, ol the AP. =a, +(8-1)d
=2+ 7(3)=23

Thus, the 8" term of the given H.P. = L

23

%
Example 24: If the 4" term and 7" term of the /P, are % and EL respectively, lind

ar

the sequence,

-
] ]

Solution: Since the 4® term of the /f.£. = = and its 7" term = i therefore the 4%

=

and 7" terms of the corresponding A.P. are % and 2—: respectively.

Now taking a,, the first term and &, the common difference of the corresponding A.F.,

wi hawve,
3 . 25 "
a, +3d =IT (1) and o, + bl =? (1i)
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Subtracting (1} from (1), gives

R PG
2
From (i), we get
- SO .
7! 2
. 1 5
Thus, a, ofthe AP.=a+d ==+2==
2 2 2
and a, ofthe AP.= g +2d = —; +2(2)
|
- _+4__q
2 2
2 2 2R
llence the required MM s —, —. —, —. ...
Lo 1°5°9° 13

6.9.1 Harmonic Mean (H.M.)
A number f is said to be the harmonic mean {H.M.) between two numbers @ and b if
a, H, barein H P

Let a, b be the two numbers and A be their H M. Then : : III : 4; arcn AP

a
1,1 bia
Therefore., doag b g 250
H 2 2 2ah
and H= 2
a+b

For example, H.Af between 3 and 7 is
2x3x7 _2x21 _21
3I+7 10 5
6.9.2 n Harmonic Mcans between two Numbers
M, H,, H,, -}, arecalled n harmonic means (H.Ms.) between ¢ and b if

a, H,, H,, H,, ..., i, bare i H.P. If we want to insert n H.Ms., between a and b, we

first find n A.Ms A, A, ..., 4, between = and l? then take their reciprocals to get n
a

IL.Ms. between ¢ and b, that is, AL’ I AI‘ will be the required » 11.Ms. between

Ty

]

e anel b,
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: : l l
Example 25: Find three harmonic means between 2 and g

Solution: Let 4, 4,, 4, be three 4.Ms. between 5 and 17, that is,
5:l _.ch ,-'1_“ A_.,q 17arein AP

[Jsing a, = a +{n—1)d, we get
17 =5+(5-1)d ¢ a,=17 and a,=5)
dd = 12
=5 d=3
Thus, A=5+3=8 4, =5+2(3)=11 and 4, =5+3(3)=14
Henee l, i, 5, are the required harmonic means.
g 11 14
P EXERCISE 6.9 4
1. Find the 9" term of the following harmonic sequences
. I .o =1 =1
1} =i ) el
0 3ET () 5
2. Insert five harmonic means between the following given numbers:
; =2 2 S l
1) — and — 1 — and —
o 5 13 ( 4 24
5 . | o L WETTIR
3. The first term of an 1P, is g and the fifth term is —. Find its 9™ term,

4, If 5 15 the harmonic mean between 2 and b, find b,

' 1 I ' . .
5. Ifthe numbers —, —— and are in harmmome sequence. hnd &

2k+1 i -1
i " 4 !
6.  Find »# so that “—! may be [LAM. belween a and b,
TV

7. Ifa’, b and o arein AP show thata + b, ¢ + aand b + ¢ are in /P,
. 9 . .
8. Il the HM. and A.M. between two numbers are 4 and — respectively, hind the
numbers,
. . . 16 _
9. 1If the (positive)} G.M. and H.M. between two numbers are 4 and —, find the
5
nurnbers.
hre—g cta-b gth-g ; ;
| L : : arcin AP show thal @, b, ¢ arein H.P.

i b ‘
e
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1. Ita b, o darein HP., show that 3{a—bHe—d)=(b—-cHa—d).

12, If between any two numbers there are inserted two A Ms, 4y, Aa, two G.Ms, &y,
(2 and two H.Ms, H, H:; show that A sl .

G (i, H.H,

13. The HM. of two numbers is 4. The AM., 4 and G.M., (G satisfy the relation
24 + *=27. Find the numbers.

14, First three of the four numbers a, 1, ¢, d are in AP, and the next three are in H.P.,
show that ad = be.

15. Ifa b, carein G.P.. show that log_ x.log, x, log xare in H.P.

16, Ifa. b, ¢are in H.P., show that

(i)

i (i) {a-ef =(atec)a2b1c),
b—c ¢
17. 2+ 5+xand9+xare m H.P., lind the value of x.
18. If the roots of the equation alh — ¢l = b(c — alx + cfa — b) = 0 are equal, prove
that e, f, ¢ are in H.P.

6.10 Miscellaneous Series
The Greek letter £{sigma) is used to denote sums of different tvpes. For example, the

il
notation Eu is used to express the suma, ta, ,ta,. .+ ... +ta, and the sum

i
expression 1 + 3 + 5+ .., 1o n terms i3 written asZ{Zi-—lJ. where 2k — 1 is the &
k=1
term of the sum and & is called the index of summation. “1™ and » are called the lower
limit and upper limit of summation respectivelv.
The sum of the first # natural numbers, the swm of squares of the first # natural numbers and
the sum of the cubes of the first i natural numbers are expressed in sigma notation as:

1+2+3+..+n= 2k P42+ ¥ 4408 = B P+ 243+t =2 0
i=1 k=1 k=1

We evaluate E[Fc"' ={k=1)"] for any positive integer m and shall use this result to

=1

find out formulae for three expressions stated above,

i{k“ — k=" ]= (1" =0+ (2" = )+ (3 =2 )+

=1

+ (=1 =(n=2)"]+[n" —(n=1)"]=n"
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i€, 2K -(k-1)"]=n" Properties of Summation:
K=

(i) i[u_. 8} Eu 12#;.
If m=1. then Z[{k —(k-1']=n" ic., E“" o i
- (i) Y aa,=aya
It m =2, then ZI:J;:? {k = !}1 ]:j,ﬁ' 2k Al
k=1
To Find the Formulae for the Sums
M >k (i) Y& iy > &'
k=l i=1 =1
(i) Weknow that (k1Y =k —2k+1 and this identity can be written as:

Kk —1) =2k -1 (A)
Taking summation on both sides of (A) from & = 1 to n, we have

I - (k=1°] = X (2k-1)

Le., o= L"Izlk—n s il=ﬂ:l
k=1 k=1

¥

or EZ k=n"+n
k=1
Thus Z}'c H{H )
Similarly. we can prm-e. casﬂy
(i) Zk wlw -+ 1}f2n+E] i) ‘qu |:n{n 1}}'
Fxample 26: Find the sum of the series 1" =3 +5" + . to n terms,
Salution: T, = (2k-1)° Co 1+ 2(k=-11=2k=-1)

=8 12k +6k—1
Let 5, denote the sum of n terms of the given series, then

5,=%'7,
=1

or .S'R—-i:,l[ﬂi.'“ 12k + 6k — 1)
k=]
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=83 % - 123 K7+ 63 k-]
k=1 k=1 =Y i

. H[MT _,g[m:re-+- 2+ I}|1+ﬁ[m1_n
2] 6 2 ]

=20 (n+1) = 2n(n+ D20+ 1)+ 3n(n+1)—n

=20 (0" =20+ 1)=2n(20" + 30+ D+ n(3n+3)—n

=200 +2n" +n)—(2n° +3n+ 1))+ n(30+3-1)

=2n[(n’ - 2n—1+n(3n+2)

=2nin' = 2n=1)+n(3n+2)

=n[2n' —4n—2+3n+2]

=n[2n" —n]=n[n(2n* -1

=r[2n —1]

. : : -
Example 27: Find the sum of n terms of series whose #™ terms is n' + SR Eon+l,

Solution: Chiven that

1 3 .
T =n"+—ni+%u—l

Thus T, =& 4ok +—k+1
¥

and  § =i[£;"+%k3+%k+] ]

b=l

—ik:‘+ii#:+—li.&+il
ey 25 20 k=1

i

_m(n+ly +Ex i+ D20+ ”+lx|:n{n+”i-|+n
4 2 6 2 2
* E[H{n: + 204+ 04207+ 3n+ 1)+ (n+ 1)+ 4]
—E[H1+2?J:+Fi!+2i.lz+3ii+!+”-— I+ 4)
"

=—(n +4n° +5n+6)

e




Sequences and Series <1> Mathematics (_

"l

Sum the following serics upto 7 terms.

(1) I=1+2=x4+3x7+ . () I =3+3=6+-53=x9+ .

(i) I x4+2%7+3%10+,.. (iv) 3%x5+5%0+T% 13+,
v) '+3+5+.., vi) 2P +4x 2+ 6% ¥ +..,
(vi)) 3x P+ 5x T+ Tx 4+, (DT H(1+2)+ (1 +2+3)+ ..

(ix) P+ +29++22+3H+...

(X) 224xT+3=x6x10+4=x8=13+.,,
Sum the series.

() -2+ -+ .+ 20

+
I e Sl e o

(i) —+ + +... o lerms
2 3
Find the sum to »n terms of the series whose »'™ terms are given,
(i) 3m+n+1 (i) W —4n+1
Given n" terms of the series, find the sum to 2i terms,
() 303+ 20+ | (iiy # +~2n +3

6.11 Real Life Problems involving Sequences and Series

Example 28: Vehicle Arrival Sequence
Vehieles arrive al a toll booth at a rate ol 4 cars every 5 minutes. Represent the number
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Simple Interest on Loan (Arithmetic Sequence with Particular Term)

Example 29: To buy furmiture for a new apartment Tayvab borrowed Rs. 50,000 at 8%
simple interest tor 11 years. How much interest will he pay?

Solution: Since 8% is the yearly interest rate, we have

Interest atter one year = R, 50,00H] = ﬁ ® = Rs. 400K

Interest after two years = Rs, 50,0011 = % ® 2= Rs. B0O0

Therefore, we have the AP,
4000, BOOO, 12000, ...
Here, a, = 4000, &, = 8OO0, d = a,—a, = 4000, n =11
Using the formula
a,~a | n=1)
@, = 4000 + (11— 1)(4000)
= 4000 + 1O{4000)
= U000 + 40000
= Rs. 44000
Thus, Tavvab will pay a total interest of Rs. 44000 on borrowed amount of Rs 50,000
after 11 years.
Compound Interest on Loan (Geometric Sequence with Particular Term)
Example 30: Amna invests Rs. 200000 at 5% interest compounded annually. What
total amount will she get after 10 years?
Solution: Let the principal amount be P. Then,

The interest for the first year = P = ﬁ = P(0.05)

The toral ameount after first vear — 2 - M0.03) = (1 + 0.05)
The interest for the second year = (1 + 0.03) = 0.035
The total amount after second yvear — P(1 + 0.05) + (1 + 0.05) = 0L05
A1+ 0.05)1 +0.05)
= P(1+0.05)
Similarly, the total amount after third year = P{1 + 0.05)°
Thus, we have sequence of amounts
P(1.05), P(1.05)%, P(1.05Y, ...
which is clearly a (3.7, with
a,=P1.03)L r=1053n=10,q,="
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Using the geometric sequence formula
a, =ar-’
= Hl.F'm_ :

= P(1.05) = (1.05)*

~ (200000)(1.05)'" " = 200000

= (2000003 1.62889)

= 325778.92
Thus, the total amount Amna will get after 10 years will be Rs. 325778,92
Crid Column Distribution (Arithmetic Series Sum of Terms)
Example 31: A weh designer 1s using a | 2-column gnd system where cach column
increases i width by 10px from the previous one. The first column width is S0px wide.
Find the total width oceuped by all 12 columns.
Solution: This follows an arithmetic series with:

First term = a, = 50, Common difference = 10

Number of terms = n = 12
Using the formula for the sum of an arithmetic series:
S = ’—;[h, +{n— Dd]

i %[1{5{1]“12 (10)]

=6[100+ 110]=16[210]
= 1260px
Thus, the total width of all 12 columns is 1260px.
Example 32: Motor Vehicle Leasing Using Arithmetic Sequence
A company leases a motor vehicle with the following terms:
«  The first monthly payment is Rs, 15,000
#»  Each subscquent payment increases by Rs. 500 due to inflation adjustments.
«  The lease term is 24 months.
Find:
(i)  What is the payment in the 24™ month?
{i1)  What is the total amount paid over 24 months?
{iii} If the company can only afford to pay a total of Hs. 400,000, can they
complete the 24-months lease?

{1v) Find maximum months 7 such that total, payment 5, = 400, 000
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Solution: Given:
First term = a, = 15000
Commaon difference = d = 500
Number of terms = n =24
(i) Payment in 24% month:
Using the formula
a,=a, +{n—1)d
dyy = 15000 + (24 — 1)(500}
= 15000 + 23 = 500
= 15000 + 11500 = Rs. 26500
{11). Total payment over 24 months using the formula

& %m,, @)

- ? (13000 + 26500) = 12(41500} = Rs. 498000

(1ii) Can the company afford the lease? No. Total payments {Rs. 495000) exceed the
budget of Rs. 400,000 by Rs, 98,000,

(iv) Using: §, =gr2a, (- 1)d]< 400,000
Substluting the values:
2 12015000) 1 (n— 1)(500)] = 400,000

7 [15000 + 2507 — 250] < 400,000
2500 + 14750) < 400,000

2500° + 14750m — 400000 < 0
B+ 59— 1600 <10

Associated equation is n” + 59— 1600=0
e er{S':J}'\ — 4 1—1600)
2(1)

—59£099.4

]
=

—-50-99.4 —594+99.4
H= =
2 2
n==—792 np=202

Clearly n = 20 sutisfy the incquality.

S0, n = 2015 the maximum months such that payment § == 400,004,
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h

6.

|

P EXERCISE 6.11 _§

A sum of Rs. 10400 is paid off in 40 instalment such that each instalment is Rs.10

more than the preceding instalment. Calealate the value of the lirst instalment.
An investor invests Rs. 150000 at an annual compound miterest rate of 6% for 8
years. Find the total amount will he pet after 8 years.

The population of a town 15 40841011 at present and five years ago it was 3200000,
Find its rate of increase if it increased peometrically.

Determine the total worth of a yearly Rs, 5000 investment after 20 vears if the
interest rate is 5% compounded anmually,

A water tank develops a leak. Each week, the tank loses 5 pallons of water due to
the leak. Initially, the tank is full and container 2000 gallons.

{a) llow many gallons are in the tank 20 weeks later?

(b) How many weeks until the tank is half-=Tull?

()  How many weeks until the tank is empty?

promise additional production at a rate of 1.4 nullion doses‘'month over the next

yar.

{2) How many doses of the vaccine, in total, will have been produced after a
year?

(b) The peneral term o, describes the total number of doses of the vaccine
produced. Describe the meaning of the variable »n in the context of this
problem. Find the general term g,

() Find the value of @, and interpret 1ts meaning in words.

At a toll booth, the number of vehicles passing through during the first minute

is 100, Due to road congestion, each minte only 8076 of the vehicles from the

Previous minule manage 1o pass,

(a) Represent the number of vehicles passing cach minute as a sequence.

(b) Find the total number of vehicles that pass through in 15 minutes.

{c) What is the maximum number of vehicles that can pass in the long run (as

time f —»a2 )

A sum ol Bs. 5000 15 inverted al 3% simple interest per year. Caleulale the intercst

al the end of cach year. Do these mterests Torm an AP.? I so find the interest at

the end ol 200 vears making use of this fact.



i].I

T

A machine is purchased for Rs.20,000. Depreciates at 6% per annum for the first
four years and afier that 8% per annum for the next six years. Depreciation being
calculared on diminishing value. Find the value of the machine after a period of
10 vears.

Two cars start logether in the same direction [rom the same place. The first goes
with uniform speed of 20kmv/h. The second goes at a speed of 12kmeh in the first
hour and increase the speed by 1 kim'h each succeeding hour. After how many
hours will the second car overtake the first car if both cars go non-stop?

150 workers were engaged 1o finish a piece of work in a certain number of days.
Five workers dropped the second day, five more workers dropped the third day
and s0 on, Il takes 10 more days to linish the work now. Find the number of days
im which the work was completed.

A radipactive product has a half life of 5 years, Tf the radioactivity leve] is 68
microcunes after 20 years. Determine the ongimal level of radicactivity.

An object moving in a line is given an initial velocity of 4.5 m/'s and a constant
acceleration of 2.5 m/s’. How long will it take the object to reach a velocity of
20m/57

In an integrated circuit with an initial current of 1080 md, the temperature in the



Permutation and
Combination

INTRODUCTION

In our daily lile, permutation and “L“'T" :
combination play vital role in counting Auigustin: Lowis Canchy
total number of possibilities, in [1.,-1%';- mﬁ.-'r} tihe Soihax
arrangements and selections of objects BEpAOn

or things. Permutation and combination

are used in many [elds of sciences. For : :
Blaise Fascal and Pierre

example, - . de Fermal (1607-1665)

. In probability theory, permutation SR
and combination are used to R e
compute how many times an objects.

CVENL OCCUTS I VATIOUS SCenarios
and used to estimate the odds of
winning a lottery.

i P I and Leibniz :
. Tn biology, these are used to find ascal and Leibniz are

the f[ounder of modern

out the total numbers of possible R
DMNA scguences. .

. In compuler science, these are used w count the possible number of passwords ol
a given length by using some specific characteristics.

. Moreover, these are the important parts of many encryption algorithms to ensure

the privacy and integrity of a data set.
7.1 Fundamental Principle of Counting

Danish wants to preparc invitation cards of 5 different

colours (red, blue, green, orange and vellow) by

Make a e diagram aond [md
low many cards con Danish
make?

changing any of 3 shapes (circle, square and rectangle).
How miany cards can Damsh make?

The problem is to count the total number of ways in
which Danish can make cards. One way to find the solution is by making tree diagram.
Let us discuss another scenario: Danish’s father wants to buy a table and has asked his
son to help him decide. He narrowed down his options for manufacturer, types of
material {(wood, plastic, glass and marble) and types of shape (circle, square and
rectangle). Find the total number of table choices from the above options.

Again the problem is to count the total number of ways in which Danish’s father can
choose a table,
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I* Way: By making tree diagram.

| Squarc | |R-:c'tnngit| | Square | Im:mﬁl | Square I |Rr:ctu.ng]r:| | Square | |R-:-:tanglc|

From tree diagram, it is clearer there are 12 choices for Danish’s father to buy a table
with one type of materal and one type of shape.
2™ Way: By multiplving, Danish’s father can find the total number of table choices 1o
buy a table with one kind of material and shape,
Total number of table choices = Total types of material = Total types of shape
4 » 3 = 12 choices

These examples show that when making a choice involving multiple stages or
calegories, we can lind the total number ol outcomes by mulliplying the number ol
options at each stage,
Statement
Suppose 4 and & are two events, the event “A4™ occurs in “m" different ways, and the
event “ 8" occurs in “n” different ways then the total number of ways that the two events
together can oceur is the product of “m™ and “n™.

Total number of wavs = mn

Prool: Letd = {u, 4y, 0y, -+, a _yand 8= {5, b, by, --- . b _}. Lel P denotes the evenl
that both events A and B occur together then Plla, by a,e A, be B 1 <i<m, 1 =j

=n} =4 % 8 Hence the number of ways in which both events 4 and 8 can occur is the
number of elements in A = & which 15 ms.
This principle can be extended to three or more events. For instance, if event 4 can

occur in m ways, event £ can occur in n ways and

event C can occur in & ways, the number of ways If three dice are talled together, how
that three cvents can occur all together is the  any total numbers of ways occur?
product of m, n and &
Total number of ways =m = n = &

Eactorial (1)
Suppose there are four chairs to be occupied by four  The factorial notation (1) was
students and we are interested in counting all the mtroduced h:" Christian Kramp

; (1760-18261 in 1808
possible ways the students can be seated. Thip vetation 15 Teoieiil wed:io
To occupy the first chair there are 4 options. Forthe  glve permutation end combination.
second chair, only 3 students remam, so there are 3 '
options. Similarly, for the third and fourth chairs, there are 2 and 1 options respectively.
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In this way, we have to perform four independent events with 4, 3, 2, and 1 options
respectively,

By the Fundamental Principle of Counting. the total number of wavs to occupy all
the chairs is 4,3.2,] =24

Such problems frequently oceur in daily life, where we to multiply the first n natural
numbers: 1.2, 3, --- , 1,

We call this produet the factonial of n and denote it by n! Or [#. thus for a natural
number n:

nl=|n=nn-1)n-2)--- 321

For some reason we also define 0! = 1. In general if n i3 a non-negative integer, then
its factorial is denoted and defined as

1 it =10
H!:m: 'y
RE—Din-2)_..321 iftnzl
s [ Challengel |
Challenge!
2=21=2 —
I'=321=6 Can wou find out —7
41-432.1=24 =
'=54321=120
6!'=6.54321=720
It can be easily observed that
mM=nn-1) for n=1
8! ; gl
Example 1: Evaluate Gl Example 3: Evaluate e
! 7.6.54.3.2. [
Solution: E—= M= 56 Solution: 9! = .[U'E'?}'E" = 84
6! 6.54.3.2.1 6! 3! 6!(3.2.1)
Example 2: write 8765 in the g1 9876541
: i 9! _ 98765430
factorial form. P —— IET 6543213
Solution: 8.7.6.5= —— """ —__ 01 ORTHSA3IIT
4321 41| @ 2 = . -8
6! 3! 6,5.4.3.2.1.3.2.1

¥ EXERCISE 7.1 4

. Letus make paratha roll, We can choose our fillings from the following:
Meat: Chicken or beef Vegetable: Onions, tomatoss or cucumber
Sauce: Mavo or Chutney
How many different kinds of rolls can we make?
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Suppose we have 3 universities, and each offers 4 careers, Use a tree diagram to

figure cut how many possible career paths vou can take

3. Ewaluate each of the followimg:
; " 1L e
i 7 (i) 91 (1ii) = {iv) o
9! . 5! I ey 12
™ 7 RETETET O e O
. 121 20! ., -
T e e X1} — 61.00.21
(ix) 3N12-3y () 20020-20) (i) o (9
4. Wnite each of the following in the factonal form:
(i) 8765 (i) 1514131211 (i) 19.18.17.16
.. 1110987 10.49.8.7.6 . 30.49.48.47
(i¥) ——— ) e i) e
54 54.3.2.1 5.4.3.2.1
(vii) mla = 1 =21 (n—=3) {vitl) (m+ 2)n + Dipn = 1)
(ix) EHHH;;?E[.J;H“H] (x) np=1¥n=2}...(n=r+2)

7.2 Permutation
Cme important application of the fundamental principle of counting is to determine the
number of ways that objects can be armanged m order.
Definition: An armangement of all or part of set of objects in a specitic order is called
a permutation, Number of permutations of (= n) objects taken from a set of # objects
is written as "P or P, r).
n!
(n=ry!
According to fundamental principle of counting:
(i Three books of mathematics for grades [, 2 and 3 can he
arranged in a row taken all at a time (If books are distinet)
"Prlzlﬂ o= r
o i edl g
(3=-3)! o
=31=3.2.1=6 ways
(i) Number of ways of writing the letters of the WORID taken all
ar a time

= when r=n

ooaal
LRI
RIEEEIEED

S
CIE

L
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h="FE on=r i = Total number of things/ohjects
r = The number ol selected things !/ ohjecis

4! 4!
= =— - =1
4-4) ™
=41=4732.1=24 ways
Challenge! Do you know!
Can wvou make tolal number of In 1974, “Erno Rubik™ invenled a populor
permutations for the “WORD™ puzzle, each wrn of the puzzle shows a
pictoriallv? permutation of the different colours. The
name af this puzzle iz “Ruhik’s Cube™,
3 . : n!
Theorem: Prove that: "P =nin-1)n-2).in—-r+1)= c )
n—i)!

Proof: As there are 7 different objects to fill up rplaces. So, the first place can be
[illed in 7 ways, Since repetitions are not allowed, so alter placing one object we are
left with (n — 1) objects, thus the second place can be filled in (s = 1) ways. Similarly
the third place can be filled in {(#=2)ways, and so on. This continues until the »*
place which can be filled in #n-{r-1)=n~-r+1ways, Therefore, by the
Fundamental Principle of Counting, » places can be filled by ndifferent objects in
min—Din—2)..(n—r+ 1) ways.
P =nin—-1}n—2)...(n—r+1)
nin—=Dir=-2).An—r+)n-r)
- (n=r)!

n!

(n—rj!

Example 4: How many different d-digit numbers can be formed out of the

.I\.'E.=

digits 1, 2, 3. 4, 5, &5, when no digit is repeated?
Solution: The total number of digits =6
The digits forming cach number = 4,
50, the required number of 4-digit numbers is given by:
pp= OO0 SIS s 40=160
(6—4)! 2! 2.1
Example 5: In how many ways can a set of 4 different mathematics books, 3 different
physics books and 2 different chemisiry books be placed on a shelf with a space for 9
books, if:

{a)  All the books are kept without any restriction.
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{(b)  All the books of the same subject are kept together.
(c)  Only the mathematics hooks are kept together,
Solution:
{a)  All the books are kept without any Reason for defining 0 = 1
restriction, n! n!

Total number of books =4 +3+-2=9 RIS P w=nal ool

EEEEBDE S o—p it T
‘p =01=98765432]1 2 VW o '
= 362880 ways
(b} All the books of the same subject are kept together.
PP P =41 31,20, 3 @l—rrﬁf-

=324 6.2.6
=1728% ways

{c) Only the mathematics books are kept mgether

4! way::- J 1.=.:|_3$ 2! ﬁﬂ\':-

2 3 500
‘B, A=41.6! . - AR
s EEEEEEGEGE
4'%&}5
= 17280 ways 6 wayse—————

Example 6: In how many ways 5 people are 1o be sealed on a bench il

{a) there are no restrictions iChiongel |

(b} two people can sit nexi to each other

{c) two people cannot sit next to each other.

Solution: e ———
. - et E g AN B cl§ D

{a) when therg iz no restriction, then ”:,.I R P mr*

MNumber of ways = "F, =51=120

Find the number of ways it only
physics books are kept together,

5! ways
b hen two people can sit next to cacl
(5) wih"“ l:““ R R e e Aand B is considered as | unit
other, then

ip 1p A +B:“J cf of of
- il
=4.'2.=24'2 ...I ﬂ-_""b 2 3 _-_1_
= 48 ways

{c)  when two people cannot sit next to each other, then
= “P — |2 van sil next o cach other) In how many ways 6 people
i arc to scated on a table if 3

-5 48120 48 canmat sit next o each other?

T2 way
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¥ EXERCISE 7.2 4

Evaluate the following:

M "R G A (i) ", ) "B

Find the value of m when:

(1) "Pi=504, (1) PP.=1514.131211 (i) "Ps: " Pa=1540:1
Prove from the first principle that;

{i) "Pr=n.""P (i} "Pr="'Pe+r."Py

How many signals can be given by 6 flags of different colours, using 2 flags at a
time?

From a deck of 13 cards, find in how many ways these are arranging in a
recrangular form? Iint {order is marter)

(i) All cards (i) 8 cards (iii) 10 cards

There are & men. Find the number of ways of arranging them in a row if:

(a)  Two old men are at left side

(b) The voungest man is not at the right side

How many arrangements are there, il 6 books are amranged 0 a row oul of 12
books”

Find permutation of 10 people sitimg on a bench 1k

{a) There are no restrction {b) 3 cannot sit next to cach other.

In how many ways can a set of 4 different blue pens, 3 different red pens and 6
black pens be placed in a rectangular form rack with a space for 10 pens if:

(&) All the pens are placed without any restriction

(b)  All the pens of the same colour are placed together

(e} Only the red pens are placed together

Hamza wants to distribute |3 pencils among 6 needy children in this way that the
youngest gets 4 pencils and others get 2 pencils, Find how many ways, there are
of arranging in a row form?

In how many ways can § books mcluding 2 on English be arranged on a shelf in
such a way that the English books are never together?

Find the number of arrangements of 3 books on English and 3 books on Urdu for
placing thom on a shelf such that the books on the same subject are together.

In how many ways can 3 boys and 4 girls be seated on a bench so that the girls
and the hoys ocoupy alternate seats?
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7.3 Permutation of Objects Not All Different

Suppose we have to find the permutations of the letters of the word BITTER using all
the letters in it. The word BIT T,ER consists of 6 different lemers which can be
permuted among themselves i 6! ways.

We can see that all the letters of the word BITTER are not difterent. It has 2Ts in

it. After replacing 2Ts, we can see there are 2 ways. g I'TLER BILT.ER

The replacement of the two Ts by T, \“’3! '-’"ﬂ-':r"-':"‘/
and T, in any other permutation will

It there is #, alike abjects of one Kind, #, alike

give rise to 2 permutations.
Hence, the number of permutations of
the letters of the word BITTER taken all

abjects of second kind and m, alike ohjects of

third kKind. theq the pumber of permtations of 1
objects taken all at a tima 18 given by:

at a time, ! "
ﬁ_1'= 6.5.4.3.2.1 =360 ways rr1u’ al _|\_‘HI. n,. r.|1]
2! 2.1

Example 7: In how many ways can be letters of the word |MISSISSIPPL| be arranged

when all the letters are to be used?
Solution: Total number of letiers in the word =11

MISSISSIPPL

lis repeated 4 times =41 ways
S isrepeated 4 times = 4! ways
P is repeated 2 times = 2! ways
M comes once only = 1! ways
1!

L A P _ades _
Regquired number ol permulabions PIVTIETRT 34650 ways

Circular Permutation Note: :
R : . The Tillwing circolar arrangements are rellection of
The permutation m winch the objects  wuch other and  considered

A A
are arranged in a circular order s same when unticlockwise and
known as circular permutation, E:;md i !”O{' cOs
Circular permutation can occur in two cases:
Case-1: When clockwise and anticlockwise arrangements are considered different
In a linear arrangement, changing the order of obhjects results 1n a new arrangement.
However, in a cireular arrangement, rotating the entire circle docs not produce a new,
distinet arrangement.
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For example, suppose three people A, B, and C are sitting around a round table. The
following three linear arrangemenis
A-B-C,B-C—4 and C—A — B are all considered the same in circular
permutations because cach one 1s simply a rotation of the others.
We conclude that:

3 linear permutations gives 1 circular permuitation.

L

; : ; 1 . ;
3! linear permutations gives 5-3 = E = 2! permutalions.

Generalizing the above idea if » objects are arranged in a circle, the number of
!

e i ; . M
distinet circular permwtations is — = (n—1)!
n

Case-1l: When clockwise and anficlockwise arrangements are considered
identical

In many real-life situations, a circular permutation and its mirror image are nol
considered different.

For example, if three beads red, blue, and black are arranged in a necklace, then an
arrangement and its rellection (as shown in the figure) are considered the same.
In such cases, we divide the total number of circular permutations by 2 to eliminate
symmetrical duplicates,
Thus, the number of distinet circular permutations is:

(n=1)!

2

Example 8:  In how many ways can 4 persons be seated at a round table, while:

(1} clockwise and anticlockwise orders are different

(M)  clockwise and anticlockwise orders are identical.
Solution: Let 4, #, C and D be the 4 persons.

(i) It clockwize and anticlockwise orders are different
According to Case-l

The possible number of ways are:
=(n - 1) ways " ” ~ - ” i
o e

=331 =6 ways.




(i1}  If clockwise and anticlockwise orders are identical

According to Case-11
The possible number of ways are = [ WEI.}"S (ﬁ \h f \a 4‘ \r),
{4 1! 3! _../; l\..m,/ \,5»,/

2 2

3-2
=—=3 3
5 ways

P EXERCISE 7.3 4

I.  How many arrangements of the lettors of the following words, taken all together

can he made?

(i) CURRICULUM (i) ADSORPTIVELY (i) PROBABILITY

2. A girl has 9 marbles. There are 4 red marbles, 3 blue, and 2 green marbles. 1T she
arranges them in a row, then find in how many different arrangements she can
make take all at time?

3. In how many different ways can the following persons sit in a round table?

Hint {Solve according to both the cases)
(a) & persoms (b) 7 persans (c) 6O persons

4, In how many ways can 5 couples sit on a round table if no two women are sitting
together?

5.  How many arrangemenis of the letters of the word ATTACKED can be made if
each arrangement begins with C and ends with K?

6. How many G-digit numbers can be formed from the digits 7, 7, 8, 8, 9, %7

-]

15 members of a club form 4 commuittees of 3, 5. 4, 3 members so that no member

15 a member ol more than one commillee. Iind the number of committees,

8. The D.C.Os of 11 distnets mect o discuss the law-and-order situation i their
districts. In how many ways can they be seated at @ round table, when two
particular D.C.0s insist on sitting together?

4. The Governor of the Punjab calls a meeting of 14 otheers, In how many ways can
they be seated at a round table?

10. Fatima invites 14 people to a dinner. There are 9 males and 5 females who are

seated at two different tables. Guests of one sex sit at one round table and the

guests of the other sex sit at the seeond tuble. Find the number of ways i which

all puests gre scated.
e ——
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11. Find the number of ways in which 5 men and 5 women can be seated at a round
table in such a way that no two persons of the same sex sit together.

12, In how many ways can 6 keys be arranged in a circular key ring?

13. How many necklaces can be made from 6 beads of dilferent colours?

7.4 Combination
Suppose, a teacher uses the names of few students to make a team for a writing
competition. Such as Ahmad, Sana, Hamza and Danish. As a combination of team
members, (Ahmad, Sana, Hamza and Danish) is equivalent to {Hamza, Ahmad, Danish
and Sana ). Because same students are in the combination. Consequently, you have the
same leam because the order of the name of

Ahimad | Sana | Hamza | Danish

Hamza | Ahmad | Damish | Sana

the students docs not matler.

So, we are interested in the membership ol the

team and not in the ways the students are listed (arranged).

Delinition

A combination of  objects taken out of n objects is a subset of r objects of a set of n

ohjects,

The number of combinations of » different objects taken r at a time is denoted by "C,
i

or Cla, ¥) or |
L

il

i :'![n—r‘j!-

ft . "
] and is given by {_",‘F =

I
Theorem. Prove that "C = i

riin—r)!

Proof: Elements of a subset of r objects of a set of n objects can be arranged among

themselves in r! wavs. So, each combination will give rise to r! permutation. Thus,

there will be "Cr= r! permutations of n different objects taken r at a time that 1s:
Crxrl =P,

! in!

s e O LT
{m—=r)! Flin=r)!
Mewd to know

Which completes the proof.

Corollary:

=% Wew ! =

) The formelae " £ and "C. are also

n! n' ;

= = known as  counting  formulae.
alin—n)!  nlO] Because, they are used o count the
possible number of ways without

listing them all.

(i) Ifr=mnthen »C,=

il n!

O n—0)! 01l

(i) If =0, then "Ca=
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7.4.1 Applications of Combination in Real Life

Example 9: Zain has § different fruits. He wants to select 5 fruits out of 8 fruits to
make a fruit chart. How many combinations of fruits he can select?
Solution: To solve this problem, we have to find the mumber of commbinations of 5 fruits
out of B fruits. Tn this situation, 5 = & and » = 5.
. il
T rlin—r)!
After putting values
s~ 8 8
TUs8-5) S 3
FxTx6x5 8BxTxf

st 370

=8x 7=2356 ways

Zain has 56 different ways to select 5 different fruits to make a fruit chart,

Example 10: In a school, a class consists of 12 girls and 8 bovs. The teacher wants to

select 5 students for an activity. In how many ways can the students be selected

including? (i) 2 girls (i) 5 boys (111} 2 boys

Solution: Number ol girls = 12
Number of boys = § A mestuurant offers 6

(i)  Nowlet’s find the lotal number of ways to select students oy yue of pizza, Tow

when txﬂﬂ[l}f 2 are ,E_f_]'rlbi. many wiys are there to
gantgay  12F B 121100 BT-651 select 2 flavours of
(") L‘J_ztmr'ﬂj!_ 210! '3-2-1-5!_36% pizza?

i1} Let’s find total number of ways to select students when exactly 5 students are boys.
ber g _ 8 _&7.6-5!
TOSI(B-5) S!'3! 513-2-1
(1)) Let’s find total number of ways to select students when exacily 2 students are boys.
(c)("c)- Bt 121 8760 1211-10:9!

21a 314l 2.4l 3-2.1-9!

7.4.2 Complementary Combinations

Theorem. Prove that: "C.="Cy

Proof: If from r different objects, we select » objects then (r — ») objects are left.
Corresponding 1o every combination of # objects, there is a combination of (& — #)

=56
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objects and vice versa. Thus, the number of combinations of 7 objects taken r at a time
is equal to the number of combinations of # objects taken (n — ») at a time.

"C, ="C,, | Note:

! I'his result will he found usefil in evalating

e e
T m=ril{n—n+r)! B e e
2
=L For example,
ri(n=r)! i ; : 123411

n o I-CII‘-=I- I?‘-II'I=I-C.?={ }{ :I=ﬁ']'|=m
r'u—.l I (-n" 1

Example 11: Find the number of the diagonals of a 6-sided figure,
Solution: A 6-sided figure has 6 vertices by joining any two vertices, we get a line
segment,
o 6!
Mumber of line segments = °C: = ﬁ = 15
But these line segments include 6 sides of the figure
number of diagonals = 15-6 = 9
Dilference between permutation and combination

Permutation Combination
= Order is important. *  Order is not important
e.g., alr and ba are different (because eg., ab and ha are same
order of any object is matter) (because order does not matter)
= Arrangement of objects = Selection of objects
e.g. arrangement of: e.g. selection of:
* ball of different colours *  different colours
* English alphabet (letters) * members in a team
* people while sitling on chairs *  [ood items

Application of Permutations and Combinations in Cryptography
Example 12: Zain wants to generate a password for his laptop to secure the data, He
can take only 6 characters to generate a password, Each character can either be an upper
case letter (4 — Z) or digits from (0 — 9).
Can you tell how many passwords can be generated by using the abowve letters and
digits:

(1) [ repention of characters 15 not allowed

(i) Tt repetition of characters is allowed
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Solution: Total number of letters = 26
Total number of digits = 10
Total number of letters and digits = 26 + 10 = 36
i = tolal number of characters = 36
p = required number of characters = 6
(1) Irepetition of characters is not allowed, we lind out total possible permutations as.

vp_%p Jgt .36

T (366! 30!
_ 36-35-34-33-32-31- 30!
- 30!
=36-35 34.33.32.31
= 1,402,410,240 ways
Henee, 1L402,410,240 passwords can be generated by using the 26 alphabet and 10

digits. (If repetition of the characters is not allowed)
{1i) If the repetition of the characters is allowed. Using Fundamental Principle of

Counting:

The total number of possible combinations = 36 * 36 = 36 » 36 * 36 x 36 = 36"
Hence, 36" passwords can be generated by using the 26 alphabets and 10 digits, If
repetition of characters is not allowed.

Application of permutations to estimate the odd of winning the lottery.
Example 13: A box contains 15 cards from (1 — 15). Danish is to select 5 cards. It all
the selected cards are the first five multiples of 2 then Danish will win the game. Find
Dranish's chance of winning the game, when

(iy  Order is important (it} Order is not important
Solutinn: n = total number of cards = 15

r=reguired number of cards =5

{1} When order is important,

; i I 5!
Total possible ways="P = " =
© (15=3)!
15!
=— =360, 360 ways
10!
Hence, Damish’s chance to win the game = L D.O00002775
360, 360
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{11}  When order is not important
i = Total number of cards = 15
r = Required number of cards = 5
Total possible ways="C = "(, = i
51(15—35)]
15! 15%14x 13x 12 11x 100
TS0 50081
[5uld=13=]2=]]
- Sxdx3Ix2xl

= 3003 ways

Hence, Danish’s chance o win the game = = = (0.00033

Application of Permutation and Combination to choose different sets of songs for
Certain Oceasions
Example 14: On Independence Day, a [3] has a hist of ten different national songs. He
wants to select any five national songs for the day. Find how many ways he can select
and play the songs:
(i) Ilthe order of playing the songs matters
(1) Ilthe order of playing the songs does not matier.
Solution: (1) When order matters
n = lotal number of natonal songs = 10
= required number of national songs = 5
Total number of ways="P = "'R,
S L 30, 240 ways
(lo-5 5!
Henee, the DI cun play the five national songs in 30,240 different ways.
{11} When order is nol matter
i = Lotal number of national songs = 10
r = total number of selected national songs = 5

D 10!
Total number of ways = "C, = ''"C, = ———
T 50 =5
100!
= —— = 252 ways
5. 5! .

Hence, the )T can play the five national songs in 232 different ways,
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¥ EXERCISE 7.4 4

Evaluate the following:
{i} “c (i) °c, (iiiy “C, (iv) ",

Find the value of n, when

14.13.12
Y

In how many ways can five subjects be selected out of eight subjects to select a
course programme?

) "C,="C, (1) °C, (i) "C, = "Gy

Find how many ways there are to choose vowel words from the letter of English
alphabhet?

In how many wavs 3 dishes of Desi foods and 2 dishes of Chinese foods be
selected from 6 dishes of desi foods and 8 dishes of Chinese foods?

From a standard deck of 52 plaving cards, there are 26 black cards and 26 red
cards. How many different possible ways are made of eight cards if select 3 cards
of black colour and others are of red colour?

A bag contains 8 red balls, 7 green balls. Find the total number of possible ways
i which five balls are selected in a way:

(i) 3 red and 2 green (11} 1 red and 4 green

(i1} 4 red and 1 green {iv) All the red balls

. How many {a) diagonals and (b} triangles can be formed by joining the vertices of

the polygon having:

(1) 5 sides (i) 8§ sides (1) 12 sides?

The members of a club are [0 bovs and B girls. In how many ways can a
committee of 6 bovs and 3 girls be formed?

How many commillees ol 5 members can be chosen [rom a group ol 8 persons
when cach committee must include 2 particular persons?

In how many ways can a hockey team of | 1 players be selected out of 15 players?
how many of them will include a particular player?

Show that: “C, + *C, =°'C,

There are 6 men and 8 women members of a club. how many committees of seven
can be formed?

(1) 3 women (ii) ar the most 3 women (i} at least 5 women?
Prove that "¢+ "C_, =""C
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15:

16.

17.

A locker of a bank is locked with four letters (A-Z). How many different
passwords can be generated if:

(a) repetition of the alphabets is allowed

{b) repetition of the alphabets is not allowed

Using a crvplographic sysiem, a password is generated with 8 characters. Each
character can either be a lowercase letter (a1 or a digit (0—5). How many
passwords can be generated if each password must contain exactly 5 lowercase
letters and 3 digits?

(a)  With repetition allowed (b)  Without repetition.

An um contains the first 15 English letters {A—0). Sania 15 to randomly select 3
letters From the wm. She wall wan the game 11 the selected letters are the first three
vowel letters. Find the probability of Sama winming the game al

{a) The order of the vowel letters matters

(b) The order of the vowel letters does not matter

On Defense Day, Teacher 1 prepares a list of 10 national songs, and Teacher 11
also prepares a separate list of 10 different national songs, The principal wants to
select 3 songs from Teacher I's list and 3 songs from Teacher 1Ts List. In how
many ways can the somgs be selected if;

(1) The sequence of the selected songs matters

{(11) The sequence of the selected songs does not matter.



Mathematical Induction
and Binomial Theorem

INTRODUCTION

Francesco Mourolico (1494-1575) devised the method of nduction and applied this
device first to prove that the sum of the first #n odd positive inlegers equals . He
prosented many propertics of mtegers and proved some of these propertics using the
method of mathematical induciion. In theoretical compuler science, il bears the pivotal
role of developing the appropriate cognitive skills necessary for the effective design
and implementation of algorithms, assessing for both their correctness and complexity,

We are aware of the fact that even one exception or case to a mathematical formula is
enough to prove it to be false. Such a case or exception which fails the mathematical
formula or statement is called a counter example.

The validity ol a formula or statement depending on a variable belonging (o a certain
set is established if it is true for each element of the set under consideration,

For example, we consider the statement Sin)=n" —n+ 41 15 a prime number for cvery
natural number n. The values of the expression an° —n+41  for some first natural

numbers are given in the table as shown below:

" 1 3 3 4 - 6 7 5 9 10 | 11
Si{m) 41 43 | 47 | 55 | 6l ¥l B3 | 97 | 113 | 131 | 151

I'rom the table, it appears that the statement S(n) has enough chance of being true. IT
we go on trying for the next natural numbers, we find n =41 as a counter example
which fails the claim of the above statement. So we conclude that to derive a general
formula without proof from some special cases 18 not a wise step. This example was
discovered by Euler (1707 — 1783).

Now we consider another example and try 1o formulate the result. Our task 15 to find

the sum of the first # odd natural numbers. We write first few sums to see the pattern
of wums,
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# [ The number of terms) Sum
| 1=1*
2 1+3=4=2"
3 1+3+5=9=3%°
4 | +3+5+T7=16=4°
5 1+3+54+74+9=25=75"

6 1+3+5+7+9+11=36= 6
The sequence of sums is (117,27 .(3)%.(4)°. ...
We see that each sum is the square of the number of terms in the sum. So the following
slatement seems W be true.
For cach natural number m,

143+5+. . —(2n-1)=n" ... (i) coathterm = 1-2(n—1)

But it is nol possible to verify the statement (i) for each positive inleger #, because it
involves infinitely many calculations which never end.

The method of mathemarical induction is vsed to avoid such situations, Usually it is
used to prove the statements or formulae relating to the set 11.2,3,...} but in some cases,
it is also used to prove the statements relating to the set {0,1.2.3,...}.

Hypothesis: A hypothesis is an educated guess or proposed explanation for a statement
based on limited evidence. It serves as a starting point for further investigation and can
be tested through experiments and observation. ln scientific research, a hypothesis is
usually framed as a statement that can be tested and either supported or rejected by
data.

Induction of Hypothesis: It refers to the process of formulating a general statement
or hypothesis based on specific examples or patierns observed in particular cases. This
technique is often employed in mathematical reasoning to propose conjectures that
can later be proven rigorously using deductive methods.

8.1 Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

If a proposition or statermnent S{n) for each positive integer o 15 such that
.  Base Case: S(1)1s true 1.e., S{n) is true for # = | and

2. Induction of Hypothesis; S{% + 1) is true whenever 51%) is true for any positive
integer &,

3. Coneclusion: 5{(n) is true for all positive integers.
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Procedure for Induction of Hypothesis:

e Substituting s = 1, show that the statement is true forn = 1.

o Assuming that the statement is true lor any positive integer &. then show that it is
true for the next higher integer.

lor the second condition, one of the [ollowing two methods can be used:

S(k + 1) is proved using Stk).

Sk + 1) is established by performing algebraic operations on 5{£).

3n(n+1)

Example 1: Use mathematical induction to prove that 3+6+9+..+3n= for

every positive integer a.
Solution: Let S{n) be the given statement, that is,
ik
S 3+649+,..4 Sra—janu

AN+

Base Case: Whenn=1, S5(1p 3= 3. Thus 5(1) is true i.e., The base

case 15 satisfied.

Induction of Hypothesis: Let us assume that S(#) is true for any # = ke N | that is,

N b A RN (A)
The statement for # — &£+ 1 becomes
34640 kAT = 3{’5’*“[[‘;*'1“”
k+hk+2

L

Adding 3(k +1) on hoth the sides of (A) gives
3k(k+1)

e

34649 +3k+3 (k1) +3E+1)

=k +l]{% +1)

30k + 1)k + 2)

-
F-]

Thus S(& + 1) is true if S(k) is true.
Conclusion: Sice both the conditions are satsfied, therelore, S(i) s true lor cach
posilive integer o
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Example 2: Use mathematical induction to prove that for any positive integer n,
- e+ 102n+1)
; ]
Solution: Let ${x) be the given statement,
o+ I{2n+1)

T T R

Sl +2* 43+ 407

O
; “ y
Base Case: If =1, 5(1): (1)* = 10 ”":“ L 'xi“?’ =1, which is true. Thus

S(1) 15 true, i.e., The base case is satisfied.
Induction of Hypothesis: Let us assume that S(&) is true for any e N, that is,

Sy P42 43 441 _w ()
Sik+D: P+ +F 4+ B +(k+ 1) (k+ Ik +1+ 12k +1+1)
| 6
b+ Tp(k 4+ 2)(2k + 3
_ k41 'ﬁ 12k + 3) (&)

Adding (& +1¥ to both the sides of equation (A4), we have

_ k(k+1H2k+1)

P+2+¥ s+ +(k+17 +(k+1)

(k4 D2k + 1)+ 60k + 1))
6
(ke +1D(2k" + k + 6k +6)
R 6
Ak + 12K+ Tk +6)
{
_ R+ Dk +2)(2k+3)
6

Thus, formuoala holds for £+ 1.
Conclusion: Since both the conditions are satishied, thercfore, by mathematical
induction, the given statement holds for all positive integers.

1+ 2n

Example 3: Show that represents an integer Ve N,

3
Solution: Let S{r) = n o

Basc Casc: When s — 1, S(1) =1e # . The base case is satisfied.

-

o

i 3
e
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Induction of Hyvpothesis: Let us assume that 5{(n) 1s true for any n = ke N | that 15,
k' + 2k .
S(k) = s represents an integer.
Now we wanl o show that S0k + 1) 1% also an integer. Forn = & + 1, the statement
becomes
(k+1V¥ +2(k+1)

S(k+1) = ;
. +3° +3k+1+26+2 (B +20)+ (3K +3k+3)
3 B 3
1oAp ] 1
_ I3 R =k+2k:—{k"+k+|]
3 3
k'+ 2k, . . E ; .
As 15 an nteger by assumption and we know that (87 + &+ [}is an integer as

ke N. Sk + 1) being sum of integers is an integer, Thus statements holds for & + 1.

Conclusion: Since both the conditions are satisfied, therefore, we conclude by
1

: ; : i+ 2 ; i
mathematical induction that > represents an integer for all positive integral

values ol a.
Example 4: Use mathematical induction to prove that

: 3 35" =D ; S
I+315+43.5 +.,.+35 = {T, whenever n i1s non-negative integer,
Solution: Let S{(n) be the given statement, that is, The dot () between two
el numbers  stands for
S(n): 3435354+ +315= _1{ =l multiplication symhbal.

35 -1 Ma—
Base Case: Forr=10, 5(0):3.5" = % or3= ¥= 3

Thus 50} 15 true 1.e., The hase case 15 satistied.
Induction of Hyvpothesis: Let us assume that 5{&) is true for any &= &, that is,

-'\.-I_
S(k):3+35+43.5 4,435 —3":5—4':' (Al
Here 5 (%=1} becomes
(delpl
Stk+1):3+35+43.5 +..+35 +35" = H 2 n
:| Eh"l_' _I
_ 3TN - ) (13]
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Adding 3.5 on both sides of (A), we get

k41
I+35+3.58% 4 +35 435 = ]L:—_“H.::“
_ 5 -1+ 45
4
A5 1+ 417 3542 —1)
3 4

This shows that S(& + 1) is true when S{£) is true.
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S{n) in true foreach ne W
Example 5:  Prove that 4" +6n—1 is divisible by 9 [or all ne ¥
Solution: Lel S(n) be the given statemenl,
S =4"+6m-1
Base Case: Putn=1, S{)=4 +6(1)-1=4+6-1=9

Which is divisible by 9. Hence it is true forn = 1.
Induction of Hyvpothesis: Suppose the statement is true forn= 1§ 1.e.,

S(ky=4" +6k—1 is divisible by 9 (A)
This implics S(k)=4" + 6k — 1 = 9, Jor some inleger &
4 + G —1=9k

Wowputn =&+ 1,
Sth+1) =4 +6(k+1)-1=4-4"+6k+6-1
=4(9k, -6k + 1)+ 6k + 61
=30k —24k+4+6k+3
=30k —18k+9
=4k —2k+1) (B}
Which is divisible by 9.
Thus S(%&) is true for 7=k + 1. So the statement is true for all natural numbers
Conclusion: Simce both the conditions are satishied, therefore, by the principle of
mathematical induction, the given statement is true for all integers n = 1.
Example 6: Use mathematical induction to prove that

= 1 i . Ce
= . whenever 11 a posiive mleser,
g‘{zk—l}{zhlj 2n+l’ E e
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Solution: Let S(n) be the given statement, that is,
i

Sar E[Eﬁ—lj (2k+1) 2n+1

- 1 "
Base Case: Forr=1, 51 = ;
) ;{Ek—l}{ﬁk.—lj 2n+1
| | 1 1
-3 2-1+1 3 3
Thus 510} is true i.e., The base case is satisfied.
Induction of Hyvpothesis: Let us assume that S{w) is true for n = m, that is,
m

Y ey ey e £

Here 5{m+1) becomes

. 1 " I
S +1) Z{zk 1)(2k+1) Zm = l+{2m F1){ 2m 4+ 3)
_ omi2m+3)+1 2ot + 3ni+1 (m+1){2m+1)
_I:Zm+l}[2m—3} (2m+1)(2m+3) (2m+1)(2m+3)
e+ 1 o+ | e+ 1

= = = (B)

Zm+3 I2m+2+1 X{m+1)+1

This shows that S(& + 1) 15 true when S(&) 15 trug,
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
mathematical induction, S(#) in true foreach ne W.
8.1.1 Principle of Extended Mathematical Induction
Let i be an integer. A formula or identity or statement S{n) forn = i is such that

1. Base Case: 5(0)is true and

2. Induction of Llypothesis: 50k +1) 15 true whenever 5(%) is true for any integer

R

3, Conclusion: 5/ 1s true for all integers n=1,
Example 7: Show that 1+ 3 45+ ... {2n +5) = (n+ 3)" for integral values of n= -2,
Solution:
Base Case: Let S(#n) be the given statement, then for n =—-2, 5{-2) becomes,

2(=2)+ 5= (-2 + 3. ie., 1 = (1)* which is true.

Thus S(-2) is true i.e., The base case is satisfied.
Induction of Hypothesis: Let the equation be true forany n=ke 7, & = -2 so that
Sk 1 +3+45+.. +(2k+5) = (k+3)F (A)
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S+ 1) 143+ 5+ #Qk+5)+ 2k +1+5)=(k+143)° = (k+4)® (B)
Adding Ezm + 5) = (2k + 7) on both sides of equation (A) we get,
L+3+5+ .+ {2+ +2k+7) =k +3F-(2k+D
=EP+6E+9+2k+7
=i+ Bk+16=(k+4)
The formula holds for & + 1.
Conclusion: As both the conditions are satisfied, so we conclude that the equation is
true for all integers n = =2.
Example 8: Show that the inequality 4% = 3" + 4 is true, for integral values of n 2 2.
Solation: Let Sir) represents the given statement 1.e., Sl 4° = 3% = 4 for integral
valuesof n > 2
Basc Case: For n = 2. 5(2) becomes
S(2): 4" =3 +4 ie, 16 =13 which is true.
Thus 5(2) is true, i.e., The base case is satisfied.
Induction of Hypothesis: Let the statement be true for any n = k(= 2)e £ , that is
S(k); 4 >3 +4 {A)
Multiplying both sides of ineguality (A) by 4, we pet
44" =4{(3 1 4)

or A S 341030 + 16
or " R R . B L
or 44 530 Ly (v 3k+12>0) (B)

The inequality (B), The formula holds for & + 1.
Conclusion: Since both the conditions are satisfied, therefore, by the principle of
extended mathematical induction, the given inequality is true for all integers nz 2.
8.1.2 Real Life Application of Mathematical Induction
Mathematical induction 1s a powerful method used to prove statements that are
formulated for natural numbers, It is often used in mathematics to justify conclusions
about sequences, series, and other constructs that involve integer values.
Example 9: Mr. Faris starts a savings plan where she deposits Rs. 1,000 rupees into
his bank account every month. Using mathematical induction, prove that the total
amount saved after n months is given by:

Sin )= 1000 mpees

where n 15 a posilive integer representing the number of months.
T ———
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Solution:Given Statement S(n)=1000=xn

Base Case: For w = 1; After the first month, Faris save Rs, 1000, Therefore, the total
savings after one month is 1000=1 = 1000 rupees. The base case S(1) holds true.
Induction of Hypothesis: Assume the statement is true for some positive integer £,
i.e., after & months, the total savings is S{k) = 1000 = & rupees.

Now, prove that the statement holds for £+ 1 months: Alter £ +1 months, you would
save an additional Bs. 1000, so the total savings becomes: S(& + 1) = 1000 = £ +1000
= 1000 = {k +1) rupees. Thus, if the statement holds for &, it also holds for & +1.
Justification and Communieation: Using mathematical induction, we prove that
saving Rs. 1000 monthly for n months wotals 1000 = n rupees.

The base case (r = 1) holds, and assuming it's true for & months, we show it for &+1.
Thus, the staternent is valid for all natural numbers #, making it reliable [or real-lile
applications.

Example 8: Imagine Al starts a daily exercise routine where cach day he inereascs the
number of push-ups he does by 2. On the first day, he does 10 push-ups. Prove that on
the n™ day, the total number of push-ups Ali has done is n° +9n

Solution: Base Case: For n = 1; On the first day, Ali do 10 push-ups. Total push-ups
= |} = | — 10h. The base case 5 1) holds true.

Induction of Hypothesis: Assume the statement is true for some positive integer k,
i.c., the total number of push-ups after k days is S(k) = &* + 9k

Now, prove it for k + 1 days: On the (& + 1)th day, you do 10 + 2 = & push-ups. The

K+ 9k +(10+20) =k “+ 2k +1+ % +9
total after k + | days becomes; ERAE A= : TR
=(k+1)" +9(k+1)

The formula holds for S(&+1).
Conclusion: By mathematical induction, the total number of push-ups after n days is
n’+9n

Example 9: Suppose you aim to lose weight by reducing vour calorie intake by 50
calories each week. If wou start at 2300 calories, prove that after # weeks, vour daily
intake is 2500-30n calories.
Solution: Base Case: Forn = 1: After | week, your intake is 2500 — 50 = 2450 calories.
The base case S(1) holds true.
Induction of Hypothesis: Assume the statement is true for some positive integer £,
L., after & weeks, vour intake is S(k): 2500-50k calories.
Now, prove it for & + 1 weeks: After k + 1 weeks, your intake will be:

2500 — 306 — 30 = 2500 = 300k - 1) calories, The formula holds for &+ 1.
Conclusion: By mathematical induction, vour daily intake after n weeks is 2500-50n
calories.
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P EXERCISE 8.1 _d

Use mathematical induction to prove the following formulae for every positive
Imicger .

(i) 14+3+5+=(2n I=n"

= {1 1 | &
(@) Uttt o=l -0
(i) 2+6+18+4 - +2x3"1=3"~1

(iv) 1x3+2=5+3= T-’+...+:f:|:-~:[EJ:|+I]|=M

&
1 I 1 I I
(v) - + +ont =1-
Ix2 2x3 3=x4 ma+1) m+
{vi) r+r:+r"+...+r"=—r{:_r}r’1, (1)
-

(vil) w+(a+ d}+{u+2di+...+[a+ [u—])d]=%[2u+(n—1}u’]

(viii) a,=a, +{n—=1)d whena,, e —d, a + 2d, ... forman A.P.

(ix) a,=ar"™" when a,ar.ar’, .. fomaGP.

oI ()

Prove by mathematical induction that for all posihive integral values ol n
(i) n +n is divisible by 2 (11} 5% =2" is divisible by 3
(ini) Bx 10" -2 is divisible by 6

gl ; ——
Prove that S »* = , whenever a is a positive integer,

x— v is a factor of x" =" (x2 )

al=2" —1 for integral values of 12 4.

4" = 3" + 2" for integral values of 5= 2.

I+nxs(l+x)" forn22and x>-1,

Alrza invests Bs, 1,000,000 1n a business that promises a 6% return compounded
annually. Prove by mathematical induction that the amount of money after i years
is 1.000,00001.06)",

Sikander starts saving Rs 500 in the first month and plan (o inerease your savings
by Rs. 500 each month thereafter. He wants to determine if he will have saved at
least Bs, 12.000 by the end of 24 months. Use mathematical induction to justify
whether hiy savings plan will meet this goal.
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1. Prove by mathematical induction that if a loan of Rs. 2.000.000 and pay Rs.
50,000 at the end of each year, the remaining balance after n vears is R,
2000000 — 30,000n,

11. I Salman starts with Rs. 5,000 and saves Rs. 1,000 monthly, derive S{n) and
provve it by induction.

8.2 Binomial Theorem
An algebraic expression consisting of two terms such as a + x, x — 2y, ax + b ele., is
called a binomial or a binomial expression.
We know by actual multiplication that
(a+2) =a® +2ax+ x° (i
{.:z—xl!'—al+3a:'x+3-1tl—x3 {ii)
The right sides of (i) and (ii) are called binomial expansions of the binomial
a + x for the indices 2 and 3 respectively.
In general, the rule or lormula for expansion of a binomial raised o any positive
integral power # is called the binomial theorem for positive integral index ». For any
positive integer i,

H (it a L S n A=Z 2 i ]u" fr=1} =1
{4+ x) _|.\'|]J.|a I[l ].:.r I[[E.Ja X _“-I[J'—l; x

RS ra '\l
n " ml
@ x + +[ Wm:" oy ( [ (A}

. .k.la—] m

LI
or briefly (g + x)" = E [ }1”'");’ . where 2 and x are real numbers,
r

The rule of expansion given above is called the binomial theorem and it also holds if @

or x is complex.

Now we prove the Binomial theorem for any positive integer 1, using the principle of

mathematical induction,

Proof: Let S(n) he the statement given above as (A).

Base Case: ['n= 1, weobtam S (1): {a+x) =r :] \h' +( : }r' 'x = a + x which is true.
A

The base case is satisfied.

Induction of Hypothesis: Let us assume that the statement is true for any n=k= N, then

g BN ok e k (&
! k: + , __[ 5 A =1 i |--;- ;"'.... E=i+=1] |'-|+ [ .r_ r
s s g o el el Lo
(5 b
ot s - (B)
Vi—1 &

A
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Stk+1): (a+ x) =[k+ l]a* [k T l\la H.r*[j: T I]a*" wx® .+

i

S

1 e P : eyt e ]uf.t* i [ * "l'm (C)
ot a- MU S e

Multiplying both sides of equation (B3) by {a + x), we have

E o &
P |x.!*'".r'+...+[ ]u*""'.-;""
, 2

o \r—1

h' f

k
{a+ .-r?l!ar+.r]* = (ot ﬂllaﬂ Ju‘ +L]

e tpH

i ¥ fk - . p \! o
_’V[N[J]ﬂ I+:\\] ]HJTLIJ‘? X ---___-g.|IN r_lja‘ 2 el
g
|

| ok L
f—rtl 5 g 1 2 -l g &
x’"}I . A |.f: l]u A ~|U}L¥J

kY (k . uk- :
+|“|a*x+4‘ ].::r"'.r'+_ o B it +[

|2

(e (b (1]
“fop *E[‘i;‘i- -]
[ R R =T S

(G YRR (e 2 o

A

5 (&l (k417 AT E (e
|:a+x;|“={ 3 ]ﬂhlﬁ-i I a4 : ]cr”: +i

R E+1Y, on R+
[ . )_:z* x +...+( & }:_1. +[.k+| ! ...(D)

We find that if the statement is true of n = &, then it 1s also true for n = &k +1.
Conclusion: Hence, we conclude that the statement 1s true for all positive integral values

of i
m [n ][" }(ﬂ } (”)m‘. ealled the hinomial coctticicnts.

SATE AT e

|

r—IfJ

u.’i +I.’ F+
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The following points can be observed in the expansion of (a + x)"
{1} The number of terms in the expansion 15 one greater than its mdex.

(i1} The sum of exponents of @ and x in each term of the expansion is equal to its
index.

{111) The exponent of @ decreases from index 1o zero.
{iv}) The exponent of x increases from zero to index.
{v) The coefficients of the terms equidistant from beginning and end of the expansion

‘ny ( n
are equal as | :|
|‘~I' .k.FJ'—F'._,

L " a ' n . = &5 .
{vi) The (r +13th term in the expansion is [ }x" ‘x"and we denote it as 1), e,
"H."
f-'n -
Lo
LF

As all the terms of the expansion can be found from it by putting #=10, 1, 2,..., n, s0 we
call it as the general term of the expansion.

f
Example 10: Lxpand [%— i} and also find its general term.
L2 a
# w0 _n ELs
Solution: | £ | = =i "}
h a g 2 a j)
(.:IT'({S‘I::I FRFE e N BN TEY &V a2y
=|— | + el __J+ = _J R _H__
\2,.: '\-.I\?- L Le A 2 ta u3;2) i
fr{a](24 i ;‘.IT ET[ET
Ll ] + ALy, e | — —
4\ 2 It Sh2 A u i
a ’a"T 2] 6.5 a* 4 654 o u] 6.5 a® 1
=—+6 — |-—— [+ — —— et — - = —.—
64 L3320 a 2116 ¢¢ 321 8\ & 1 4 g°
.a(—lz 1 64
F b, = J :
2L a a
ic R . Gl 96 64d
=2 = o r o at o204 ———+—
4 R 4 i i i
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T _,. the general term is given by
. EeaT B
na=($ 15 ) (2] =i

ﬁ fmr _—r Fi ﬁ "|| &=Tr I-"I.- "hl -2
=f—1f( ]“ L=y | =) ’;( ]
i P |N_|’" A

>Rt i 3 il

bd|=2

Example 11; Evaluate [9-9}" using binomial theorem.
Solution: (9.9)° = (10-0.1)°
= (10)° + 5% (10)" % (=0.1)+ 10(10)% % (=0.1)% + 10(10)* = (=0.1)°
+5(10Y= 1) +{=1)
= DO — (OUE 3 D000+ (1000001 ) + 100000001 ) = 50000001 ) — 0.0000]

= OO0 — 50600 + 100 — 1+ 0,005 — (00001
= 100700 005 — 5001 00001 = 93089 (0999

s I
Example 12: Find the specified term in the expansion of L %x—iw ;

(1) the term involving 1 {ii) the ffth term
{ii1) the sixth term from the end.  (iv) coefficient of the term involving <™

Solution:

(i} Let T_ be the term involving x " in the expansion of [%_z——J , then

I-"-l.].'\',,-' 3 I=r | ey
T s S I [
! |'-,_ r J'-. 2 ] [ j-r;'

s o ol ]2 II 11=2s o
- [].r]J3 _:'i,ll—_l-l{_f}.rla—rh!c—r s I:_I].-[ ]3 P

AL w . I=r '
A 1._;' 2

As this term involves x7, so the exponent of x is 5, that is,
l1-2r=50r —-2r=5-1ll=r=3
Thus T, involves x”

11.10.9 3-*r1

.'(H 3]]—h
T, = (=1 -6 (= S
=l 3 ] ) Do

r],ll i”
__lesx243 . _ 40095 ,
256 256
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(ii) Puttingr=4in T, wegetT,,
11} 3"+ 11,1098 3
iy - 18 _ o ni il L |
Iﬁ =1 ]'J [ lel—l X 4321 2__1'
Z Ux10x3 27, 165x27 5 _ 4455
1 7128 64 64

(1i1) The éth term from the end term will have (11 + 1) -6 i.e., & terms before it,
It will be (6 = 1) th term 1.e.. the 7V term of the EXPAnson,

NI s TLIDEET FY 4

(677" = Sanar

[lx6<? 1 1 77

I "3x32°x  l6x

Thus T, = (-1)*

{1v) :: 1% the cocfhicient of the term involving b,

8.2.1 The Middle Term in the Expansion of (g + x)"
In the expansion of {a + x)", the total number of terms is n + 1

Case Lz (w is even) 100 15 even then n+1 1s odd, so [% +1 ]111 term will be the

omly one middle term in the expansion.

" ; e : n+10 fn+30
Case 11z (n is odd) if » is odd then s + 1 is even so TJth and | TJIh terms of
Y,

i

the expansion will be the two middle terms.

3

7
Example 13: Find the following in the expansion of (%+ %J -
LR .T."
i} the term independent of x. iy the middle term

Solution: i)  Let T, | be the term independent of x in the expansion of

- 12
[i—: '2] , then

I

T =||f12‘\,-'i]|2—.' 2 r
i Ve JL 2 x’

_(12 _r”lI‘EJ.E:; 12 123
\

— 2 x
P
ML el

As the term 15 independent of x, so exponent of x, will be zero.
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12=3r=0=r=4.

That 1s,
= : 7 2 3 - g q
Therefare, the required term T_= | i i JElbestod iy
: N A Ax 2xl
o 11%45 495
27 16

(1) Inthis case, m = 12 which 15 even, 50 [ 3 + 1 Jth term 15 the middle term
ll‘\-,l 1X—h , 2 1] ) I
= [ 3 | = ] Because T is the required term.
L6 A 2 x
[12']:“ 2" 12x11x10x9x8x T,
___1 f— = |-x
6 J2° " B Sxdu Ixn 2|
_ 12x11x7 _ 924

&

T

f1
X X

8.2.2 Some Deductions from the binomial expansion of (a + x)"

We know that
ol PN o Pl st o
(a+x) = a+ ) ‘c+| @' A+,
b .-'I [1 .-';| '-..2
Fi ™y ¢ r
+] : Ja” ‘x’ +...+L S ]ﬁ.‘t" 4 ”].Tr”r (A)
LF n=1
(1) Ifwe pl.l[ a=1, in (1), then we hewc;
o) " n
— LY | n— 1 xt
asar (7 s R Jes.. [ FETE I N
=T« wx+ "f" ]'}.1:" o A= =12)...(n=r4 ]}_::{ bk e ot
21 Fl
m_ ol ala—tNe(n—r+Nn-rt _ n{n—l]....[n—r+1}]
ryorlifn—ri Fliin—rjl ! J

(1i) Putting a = 1 and replacing x by —x, in (1), we get.
-0 =(§ (P eon(3 Jeor (10 s (2 Jeom o (oo
.r,,~] |r A }t._(:]x.h_ﬂ_nﬁ[ —|JJ A I}..l l‘ ©)

=} - |.1.+ 2
. 0 ! k] 4 i
(ili) We can find the sum of the binomial coefficients by putting ¢ — 1 and

¥ = | in (T},
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e, “J’”N:[ j rﬂ) [aJ '+[””—1]+{:]
or 22 =(§ Jo{ Jo(4 Jrot (a20)+(7)

/
Thus, the sum of coctlicients in the binomial expansion equals to 2°
{iv) Puttinga =1 andx=-1, in (I), we have

{I ]'Jﬂ _|I'f H I xll ( i L] ]1_ +|: l}"_ ’ It ]+f I}" : il b
.'xl:l 1) \2 3 ) [”_I, [H.-'
& S o "-I Iy ‘\l '\-\. Y
Thus | ™ |_ n |+. " ,_| i ly ot (e it el I O
L o e I 5 G B =1 i
['m is odd positive integer, then
!

FARE R moy (my (R Al
| + |+...+ = + +oF |
|\|:| \_2__.' ﬁ‘_l .ﬂJ. 3 i -r:-l_l

E

If n i1s even positive integer, then

w IFJJ f.rr fm Tn T
|+: +ot| =] _L |+,,_+ J
,\uf. |__E i | 3 3 k. | n=1

Thus, sum of odd coefficients of a binomial expansion equals to the sum ol its even
coelficients.

A ‘-
Example 14: Show that: | T ]+;1. i 3(}; |+...—w(rr J: 2"
'\ h n

S S WO

n—I(n-2) )
n.[lﬂn—H—T—-,.H |

(M =
P EXERCISE 8.2 4

I.  Using binomial theorem, expand the following:

{ W il g e
Solution: | I/ |+3 3 +:r[ B S ”+3”E” (n 2j+...+n.l
L1 ) 3 n 21 al

= — 0
o [ x ) e Fa
i | —=-— () | 2a—— {111} —_— . |—
| ] a 1|.| x Va |
2. Calculate the following by means of binomial theorem:
(i (097 (i) (2.02)* (iii) (9.98)° (viy (2.1)°
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3 Expand and simplify the following:

@) (a+vZ2) +(a=2x) i) (2+43) +(2=43)

4.  Expand the following in ascending power of x;
i) Err=x%) (i) A=x+x%)"
5. Find the term involving:

13
(i) x"in the expansion of (3—2x)° (i1} x 7 in the expansion of (,s:-i,j
(A
Eok . - . LA i - .
(iii) @ in the expansion of | ——a | {iv) w inthe expansion of (x-ﬂ]
x

i
K

6. Find the coefficient oft

1 In
(1) x"in the expansion of [_::J - E.i 1 {ii)x" in the expansion of I_(,:;2 = i]
L

o, x
; } . - i I _.: I:|.
7. Find 6th term in the expansion of | = |
I; 2x )
8. Find the term independent of x in the following expansions.
w wJ0 R o
? br4 ' o -
(i) |x- (1) V- - i) (L+ x| 1+ — |
X 2x iy
9. Determine the middle term in the following expansions:
2 mld 11 .-' 2+l
o i s 8 1 1 ¥
() | ——=— (1) P e Q) | 2o
. 2 2 3x 2x
X, A
i i Yo ) T i
10. Show thar: | || ; i) | |_ p L
1 & 3 "

8.3 The Binomial Theorem When the Index n is a Negative

Integer or a Fraction
When # is a negative integer or a [raction, then

(I+x)y =14+nmx+ nfr;l; L x+ Bin _1:; !{n— 2) ek e
L rirn=1n=2). .. n—r+1) e

rl
provided | x |< 1,

an=1) o nn-DE-2) 5 o ed ihe

The series of the type 1+ nx+
21 3

binumial scrics.
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s The proof of this theorem is beyond the scope of this book,
. Sg.rmbu[s[; ],[: },( : )eic are meaningless when n s o negative inleger or a

[rac o,

: ey mir =1 {m—=2) (=l

*  The general lenn in e expunsion i= T = : £

Fa
Example 15: Find the general term in the expansion of (1+x)™ when|x < 1.
34 :—s:l...{—a—” i

rl
_ D345 (r+D)

Solution: T

r+]

= :ir:-l

12345 (r+2) ",

r! wR 1.2
Y A+ r+2) , _ 1Y (r+1) (r+2)
2.r 2

Some particular cases of the expansion of (1 +x)", n<o.
(i) (l+x) ' =l-z=x' -2+ . +(-1)x" +..
(1) (Q+x) =1=2x+3x —dx +, .+ (=1 {r+1}x"+
L) (r+2)
j.: .I | !

(iii) (1+2)” =1=32+65" =10x" +...+ (=)

Ei""r::' (1 '.t':l_l e e e o A e i
(v} ﬂ_-\'}_:‘ =1+ 2x+3x" +4x' e e
e )

-
F=3

8.3.1 Application of the Binomial Theorem
Approximations: We have seen in the particular cases of the expansion of (14 x)"

(vi) (1-x)7 =1+353x+6x" +10x" +...

that the power of x goes on increasing in each expansion. Since | x <1, so
| X |" -f:| x| forr=2.3,4...
This fact shows that terms in each expansion go on decreasing numerically if x < 1.
Thus, some initial terms of the binomial series are enough [or determining the
approximate values of binomial expansions having indices as negafive integers or
fractions.
Summation of infinite series: The binomial series are conveniently used for
summation of infinite series. The series (whase sum is required) is compared with
=11, mn=0(n=21 .
1+ nx+ :I.r' + ) ( ].r‘ +....
! 3
to find out the values of n and x. Then the sum 15 caleulated by putting the values of &

and xin {1+ x)".
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Example 16: Expand (1=2x)""to four terms and apply it to evaluate (.8)"" correct to

three places of decimal.

: g : ; 1 2
Solution: This expansion is valid only |f|2.:: <1 or 2|_J|1 <l or|x|< = .thatis

i 5 g Te 3
) ) )
S e el 2 (~2Zx)+ = (2% 4 ?,le A{—2x) -
Mgy LIV
3l 3, ..o 3l 2 T
o [ 4y —Bxhy-
R 321 g
i A o BES 1 &F)
3 9 333 321
2 4 ., 40
=l==—x X — X
3 9 81
Putting x —.1 in the above expansion we have
. P A MMy
(1-20)" = 1=5 (D5 (1 1) =
2 04 .04
T 0 o 0 o4 | =.04
I 370 B (- 40= 001 =.04)
=] — (6666 — 00444 — 009 =1- 07159 = 92841
Thus {.8)' 7= 928
Alternative method:
'\. & e "
¢ 5151 sl9)Ee
(,E]I! =[:]_I2:II."' =1—I—+—|:—,2':+ woL f {—.2}34'."
3 21 3!

Simplify onward by yourself.
Example 17: Evaluate 430 correct to three places of decimal.

e L
Solution: 330= (300" =(27+3)

: 3 ] 13 |.-3'f 1 1
=27+ || =i — |
27/ S 2

=3(1+H’"

L
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3,1 1f1] / | _“I [IT+
‘ 39 9[9 L | 11 ol o S

= 3 [1 + 03704 —.001372] = 3 [1.035668] = 3.107004
Thus 430 = 3.107
| —x

Example 18: Find the coefficient of x* in the expansion of -
(l+x)

Solution:

—=(1-x)(1+ )

a2k 2 E2ED gy EAEDE T Dy
i

(x D D2 (P32 I (et IR0
=2+ T AT+ EOE o T T Y H I D L]
Coefficient of x" ={(=1) (=1 n+ (=17 {n+1)
=(=)'n+{-"{n+1)=(-1)[n={n+1}] = (-1)".2n+1)
Exﬂmple 19: [f x 15 so small that its cube and higher power can be neglected, show
fi—-x |

that |—z1—1+—r
Vit x

-]

1-x 2
Solution: | —— ={1—xy"7 (I+x) "7

Vi1+x
"\l = - &
1) A

= |+%i-_=:}+%(-;}z+... 1+[-%}(+“ 2N 2 Ja,

i ¢ 2 W
Example 20: For ¢ = J | i | 1:3 % | | 130 4 | o
2ho J 22l 9 ) T 7wl 9

show that 517 + 10y 4 =10
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; &Y 2 E
Solution: v = -1- 4 || L) 4 I 225 4 + ... (A)
210 | am 9 83119
Adding 1 to both sides of (A), we obtain
¢ a2
iy | i 4 ”’5 (1)
219 4211 9 E’H }

Let the series on the right side of {B) be identical with
n{nl-ﬂ_r: 5 H{H = I;:[H—EJI,‘ .

I+ mx+

which 1s the expansion of {1+ x)" for| x | < 1and # 15 not a positive mteger.

On comparing lenns ol both the series, we gel

L (4 ;
g pmt
n 3 ||‘ 0 J (1)
a(n=1) |.3( 4 Y "
x = e (11)
2! 421, 9 J
; ; o
From (i), X i (1il}
Substituting \'—E in (i), we get
a7 e o Rl
nin=1) [_ T= i E i nin=1) 4 =i I_b
2. A  §UEl 2 8ln* 8§ 8l
or Hn—-1)=0bn or .r]'—]=31'i!::=ﬂ=—l
Putting n=-— ,1, m i), we get v = +=—%
2
—1i2 w12 1FX
Thus 1+ v=[|—i] = [i | [i =i.'—
; % 9 J L4 9 1 5 V5
or  Af5(l+y) =3 (iv)
Squaring both the sides of (iv), we pet
5(1+ 2y+ y*)=9 Or S¥T+10y—4 -0,
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P EXERCISE 8.3 _d

Expand the following upto 4 terms, taking the values of ¥ such that the expansion
in each case is valid

[ N A

. s " —x ; |+ 2x

Q@ 140 ) -39 i U2E_ gy ME2
{1+ x)? feam

Using Binomial theorem find the walue of the following to three places of

decimals.

—

1
; o s z | ; VT
(i) 09 (il (1.0%° (ill}) —— {iv) —
Y252 V8
Find the coefficient of x" in the expansion of
e 4 o z
1+ x : (it} (1+ x}l
(1+x)° {(1-x)
1f x 15 50 small that its square and higher powers can be neglected, then show that

1—x 3 R Y | R L 3

(i)

Wl—x 2 % 7
O+ T (16430 1 17 R P 25
iy : £} { %) &«————x (iv) b ot B Pl

4+ 5x 4 254 (1—x)’ 4
If x is so small that its cube and higher power can be neglected, show that
' I 9 4 I+ x 1
i) Vl-x-2x*=]l-—x-——uxt ii — =l+x+—x
WA 3 Slemxm— () ([T e

If x is very nearly equal 1, then prove that px* —gx” = (p—g)x*™9

Identify the following series as hinomial expansion and find the sum.

ik b A0 R L
24 - 4 3181 4

] I 3 1.3.5 =
Use binomial theorem to show that 1+ —+ — + - +.o=w2
4 4 ~€ 4.8.12
T L3501 Y ;
L E T e B |— | +.., provethat y* +2y—-2=0,
T T 33 . '

e

prove that 4y° +4y-1=10
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8.4 Binomial Coefficients Using Pascal’s Triangle
Binomial coefficients arise in the binomial expansion of powers of a binomial
expression, such as (x + ¥)". These coefficients are denoted by:

i
" n! i
=—— ,wWhere 0 < r<n,
r Flin—r)!

b
Pascal's Triangle provides a combinatorial method to compute binomial coefficients
without direetly using factorials. The construction of Pascal's Triangle follows these rules:
1. The first row (corresponding to n=0) consists of a single entry: 1.
2. Each subsequent row begins and ends with 1.
3. Ewvery interior entry is the sum of the two entries directly above it from the
Previous row.

R'l“'g Pascal’s Triangle
D . L]
1 ]
5 ;"J[ ‘\-.,__r
x Pl
3 Az
i i
4 S1 4 %
. L e N e
5 105 N
i & Tt Tn
] 15 20 1
' W T ey T
T2 7 AL e e
AN R
Mathematically, this is expressed by Pascal's Rule:
‘=1 fa=11
I I n
Pascal’s Rule: :=| |+' L forO<k=<n
k) \k=1]\ &k ]

The entries in the n-th row of Pascal's Triangle correspond to the binomial

r f
. nia i
coefficients l ! 1 :
LLAR! "

4
For example, the binomal coctheients comesponding to = 4 are:

4 4 (4% (4 4"
=1, =41| J:ﬁ“ =4, i
0) | |2 3] 4

Example 21: Expand (x + v}* using Pascal’s triangle.
Solution: The binomial coefficients for the expansion of correspond to the entries in
the n=4 row of Pascal’s Triangle: 1 4 6 4 1
Thus, the binormal expansion using Pascal’s triangle 13

(e + 0 = Let + 4y + ey + 4t + 1A

(x+ 1) =2+ Ay + 6y + 4 + )7
=
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Example 22: Expand (x — 2)" use the Binomial Theorem and using Pascal triangle.
Solution: Expand using Binomial Theorem:
(x4 2P =3Cox’ (- 2"+ 30 2 (=D + 3G S 2P 3G - 22 0T (- 2)°
+HCa i 27
=¥ 0¥y +40x" 8097 + 80 nd - 32v.
The binomial coefficients for the expansion of correspond to the entries in
the n=5 row of Pascal’s Triangle: 1 5 10 10 5 1
(a+ by ="Coa® 8" +°C1a* b +°Coa P+ °Caa’ B2 +7Caa' B +7Cs " B
Replace binomial coeflicient from Pascal triangle anda=x h=-2
(x+2PF =0 2 +5x7 '+ 1050 2P+ 10270 2P +5x( 20+ 2
=x 10 +40x 80X +80n 32y,
8.5 Application ol Binomial Theorem
8.5.1 Finding the Remainder using Binomial Theorem
Example Find the remainder when 8'™ is divided by 7.
Solution: Express 8 m terms of a multiple of 7.
8=1+7
gl — {1+ -llr]lm
Using binomial theorem
(1 + 7%= 70" 4 e 771 L+ M, T+ e, T
We see that all terms in the sum are divisible by 7 except the last term i.e."™C,, 71"
So, remainder will be given by the last part.
Remainder = ""'C,,, 71" =1-1-1=1
Example 23: Find the remainder when 2'™ is divided by 3,

Solution: We calculate the binomial expansion.

2'."".l_|::!l_.|.]|l:"'.|
|'r]|:|[] 1"|3,"c,[ 1}ﬂ+'fl'|.m' 3% ”,+,'r]|.’]l|'" 1) +I’H.|'U\_‘“|: 1y
= Ak - = 2w - O e
0 LI \ 2 [I{H};

= 3" — (100137 + 49003 -, - (100)(3) +1
= 33" — (100)3™ + (490003 — .. —100]+ |
= Jwanintiger +

This shows that 2'™ leaves the remainder 1 when divided by 3.
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Example 24: Find the unit digit of:
W @y G 257" (iii) (74
Solution: (i) Now 126 can be writing as: 126 =4 = 31 + 2
Since, the remainder is “27
S, 3=
Hence the unit place digit of (43)'*¢ is 9.
(i) (25)*"
As the Unit place digit is “5" which always remains 5 at unit place.
(iif) (749"
Now 247 can be written as:
24T=4=61+3
Sinee, the remainder is *37.
So, 47 - 64
Hence the unit place digit of (74)™7 is 4,

Example 25: [T the fractional part of the nuwmber % i% % then lind &.

iﬁln -4 lil.ﬂ'l
31 31
E-I--l:' :2 5 }I ]

3

Solution:

16 . 100
- (32)
3

= '5{31+1}"”

31

16
=—{31h+1
3]{ )

—lt‘.i.i’:+E
31

&h is an integer, fractional part = Ef:
2

S0,k=16
Finding Digits of a Number
Example 26: Find the last two digits of the number (11)'%.
Solution:
(I =(11%"
(11y2=(121)°
={120+1)"
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=5C, (1200° +°C) (1207 (1) + °C: (12003 (1) + °C3 (1200°(1) = *Ca (12001 +
"Cs (120)'(1)°+ "C (1)

=5 (1200% + %€ (120) +5C: (1209 + 5C: (1209 + 5C (1209 + 8Cs (1200 + 1

A multiple of 100 + 6{120) + 1 = 100k + 72, The last two digiis are 21.

Divisibility Test

Example 27;: Show that (153" + (13" is divisible by 14.

Solution: (15)* +(13)° = (14 + )P + (14— 1)*

=[BC x (1)1 = BCy (14)"2 + B (1) + 4B 03] + [BC < 141 -0 (14 +
PG4 - PG40 + ... + BCu(14) - "]

=3¢ % {14}|3 + By = (14)12 + B, x {14}|1 Fo.4+ 1+ 150, x (14)15 - 5y “4}|4
bt BC(14) - 1]

= [, = (14Y2 + BO14)y + B 4+ L+ T+ PG4 PO 04y + L+
3C1a]
144

Which is divisible by 14.

8.6 Real Life Application of Binomial Theorem and

Mathematical Induction
Here are some examples applying the concepis of mathematical induction and the
binomial theorem to real-world problems such as Puzzle, domino effect, Pascal's
Triangle, Leonomic Forecasting, Rankings, and Variable Sublettng,
Estimating Costs in Supply Chains {Binomial Theorem)
Example 28: A company wants to eshimate the total cost of producing and delivering
a product wsing a supply chain. Each stage of the chain (production, packaging,
shipping) involves additional costs due to inefficiencies. If the base cost of production
is C, and each stage adds inefficiency costs, modeled by (1+ x)" where x is the
inefficiency rate per stage and n is the number of stages, estimate the cost for small
vialues of x
Solution: The binomial theorem allows us o expand (1+ x)* when ¢ is small, giving a
more manageable approximation,

min—1) .

(1+x)"=1+nx+

For small x, we can approximate the total cost by only taking the first few terms of
the expansion.

Let’s say = Rs. 100,000, the inefficiency rate x = (103 (5%), and there are n=3
stages (production, packaging, shipping).

The total cost is; Cost = = (1+x)"= 100 = (1 + 0.05).
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Expanding using the binomial theorem:

(1+0.05) = 1+3(0.05)+ 33— 1)2 (0.05F =1+ 0.15 +0.0075 = 1.1575
Thus, the total cost is approximately:

Cost — 100,000 = 11575 — 1157300,

This means the tolal cost is Rs. 1,157,500, which includes inelliciencies.
Mathematical Induction: Domino Effect
Example 29: A line of 100 dominoes 1s set up so that when the first domino falls, it
causes the second domino to fall, and so on, Prove that if the first domino falls, all 100
dominoes will fall.
Solution: Base Case (7 =1): For | donmno, 1f 1t falls, it"s true that 1t has fallen.
Induction of Hypothesis: Assume that for v = & if the first k dominoes fall, then the
k™ domino will also fall.
Il the first & =1 dominoes are sel up, and the first domino falls, then all dominoes, up
tor the (& +1)™, will fall. 1f the first k dominoes fall {inductive hypothesis), then (k+1)"
domino will also fall.
Thus, by mathematical induction, if the first domino falls, all 100 dominoes will fall.
Economic Forecasting with Compound Interest
Example 30: A bank offers a compound interest rate of 5% per yvear. Sumaira mvests
Rs, 100,000 for 3 years. How much will her investment be worth at the end of 3 years?
Solution: Using the compound interest formula, the future value a of the investment is

AT

g Fid
riven by: A= P14
g i t H‘

where: P = 100,000 {the principal). r = 0.05 (the interest rate). » = | {compounding
once per year), £ =3 {the ime 1n years).
Substitute the values: A=100,000% (1 + 0.05)'* =1000 = (1.05)°
Using the binomial expansion for (1.03);
(1+ 0057 = 1+ 3%0.05 + 3 = (D05 + (0.05)°
=] + 015+ 00075 - 0L000125 = 1.157625
Now calculate the future value: A = 100,000 = 1,157625=1153762.5
So, after 3 years, the investment will be worth Rs. 115762.5.
Variable Subletting and Growth in Supply Chain
Example 31: In a supply chain system, a company starts with an initial inventory of
500 items. Every month, they sell 60% of the inventory and restock 100 items. How
many iems will they have afler 6 months? Use mathematical induction 1o prove the
pattern.
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Solution: Each month, 60% of the inventory is sold, meaning only 40M4 remains. And
1001 items are restocked every month.
Let [y represent the inventory after g months, The recurrence relation is:
Terr =041 + 104
We can use mduction to prove the formula.
Base Case: n={, The Initial Inventory 1s: £, = 500,
Inductive Hypothesis Assume that afler » months, the inventory £, is expressed by
the formula: £, = 250+ 250 = (0.4)"
This is our inductive hypothesis. We assume it holds for some n=Fk WNow, we need to
show that the formula also holds form = £+1.
We need to prove that 18 the formula holds for fe then it also holds for e,
Te+1=250 + 230 = (0. 4)"
Start with the recurrence relation:
fiey =048+ 100
Substitute the inductive hypothesis fy= 230 + 230 = (0.4)" into this equation:
Ji-y = 0.4 % (250 + 250 = (0.4)") + 100
Distribute 0.4 across the terms:
Tre) =04 % 230+ 0.4 x 250 = (0.4 + 100
Feer =100+ 100 = (0.4) + 100
Tee1 =200+ 100 = (0.4
Notice that 200 can be rewritten as 250 — 50, so:
I4+1=250— 50 + 100 = (0.4)*"
Thus, the formula holds for n= & + 1, completing the inductive step.
Conclusion: By the principle of mathematical induction, since the base case holds
and the inductive step has heen proven, the formula;
Lo = 2500+ 250 = (0L4)" 15 valid tor all m = 0.
Now that we have t formula, we can ealeulate the inventory after 6 months by
substituting » = & into the formula:
le = 250 + 250 = (0.4)°
First, calculate (0.4)": ({],4}"‘- = (1,009
Moy, substitute this into the equation:
fo =250+ 250 = 0004096 = 250 + 1.024 =251.024

So, alier 6 months, the invenlory is approximalely 251 ilems.
T ——
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VP~ EXERCISE 8.4 4

1. Find unit place digits in;

(i) {25}""'5 (i) (?4]*5 (i1i) {5’5’3}”
2. Find the last twa digits of the number;
(i (nt (i) (43)° (iii) (9)'®

3 Find the remamder using binomial theorem when:
(i) (337 isdivided by 17 (i) (9)'% is divided by 41
4. Show that & + {g + 2 + {a + 47 + | is divisible by 12, whenever “a™ is an odd
integer.
Show that (15)'F + (13)"7 is divisible by 14.
6. Approximate the following:
(i) (1-0.02)*" (i) (1=0.01)""

Find the binomial coetficient (*Ci) using Pascal's triangle.

=]

= u

A company expects its annual revenue to grow at a fixed rate of 6% per vear. The
revenue in year 1 1s R = Rs. 10,000, (00). Estimate the company’s revenue after
4 years using the binomial theorem for small growth rates.

9. In a supply chain system, a company starts with an initial inventory of 400 ffems.
Every month, they sell 80%, of the inventory and restock 50 items, How many
items will they have after 8 months? Use mathematical mduction to prove the
pattern.

10, A bank offers a compound interest rate of 108 per year. Zafar mvests
Rs. 2,000,000 for 4 yvears. How much will his investment be worth at the end of
4 years?

Il. Zaid is organizing a sports competition with 8 teams. Every team plays against
every other team exactly once. How many matches will be played in total? Use
Pascal's triangle to solve this.

12. A line of 70 dominoces is set up so that when the first domino falls, it causes the

second domino to fall, and so on. Prove that if the first domino falls, all 70

dominoes will Fall.

13, A company starts with an initial inventory of 1,000 items. Each month, the
company restocks 100 items and expects inventory costs to grow at 2% per month
due to inflation, Tse the hinomial theorem to estimate the inventory cost after 6
months,



Division of Polynomials

INTRODUCTION

Polynomials play a fundamental role in algebra and have wide-ranging applications
in various fields, including engineering, data science and digital communication. This
unit explores polynomial division to determine the quotient and remainder. The
remainder theorem is introduced as a powerful tool for evaluating polynomials
efficiently, while the factor theorem is applied to factorize cubic polynomials, These
concepts extend beyond theoretical mathematics, finding practical applications in
polynomial regression, signal processing and coding theory, By mastering these
techniques, students will develop a deeper understanding of polynomials and their

significance m solving real-world problems.

9.1 Polvnomial Function
A polynomial in x is an expression of the form
n nil = e -
ax"+a x"rg x"T dorax raxtd, (1)
Where n 13 a non-negative integer and the coefficients a . a, 0, -, ., 4, and a,are

real numbers. It can be considered as a polynomial function of x, the highest power of
xin g polynomial is called the degree ol the polynomial. In the expression (1) il
a, # 0 then 1t 15 a polynomial of degree a. The polynomials - 2x + 3
3x' +2x° —5x+4 are of degree 2 and 3 respectively.

Example 1: Divide the cubic polynomial 3x' —10x° + 13x — 6 by the linear
polynomial x — 2, Also lind quotient and remainder.

Solution: P
x 23 ¢+ 13x 6
_lti; fx
4x° + 13x
—4x" + Bx
Sx—6
et 5 10

4

Henee, we can write: 30 — 1005 + 13x—6=(x—2){ 3 —dx+ 5) + 4
So, quotient = 33 4x = 5 and remainder = 4
T ———
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Example 2: Divide the polynomial x'— 3* + 527 — Tx + 2 by 2’ —x + 1. Also find
quotient and remainder.

Solution: r=2x+2
x .1r+[J:r4 < s S T -
1'4+ r+ x
27 +dx - Tx
:_Hflf;_l\'
Iy’ —Sx+2
2.1'1_'_ 2x+2
—3x

S0, quotient = x* — 2x + 2 and remainder = —3x
9.1.1 Remainder Theorem
Statement: II' a polynomial f{x) of degreen =1 is divided by x—a ull no x-term
exists in the remainder, then f{a)is the remaimnder.
Proof: Suppose we divide a polynomial f{x}by {(x—a). Then there exists a unigue
gquotient gix) and a unigque remainder & such that

f(x) =(x—agix) + R (i)
Subsliluling x =g in equation (1), we get

fix)=tfa agla)+R

fla)=R
Hence remainder = (a)
Example 3: Find the remainder when f(x)=x"+ 1" + x" +1 is divided by x+1
without performing division.
Solution: Here fix)=x"+x +x'+1 and x—a=x+1=a=-1

Remainder = fi-1) { By remainder theorem)
==+ (=1 =1 + 1
—1+(D+1+1=2

Example 4: Find the value of & if the polynomial x' + kv® — 7Tx+ 6 has a remainder
—4, when divided by x+ 2.
Solution: Let fix)=x'+ k-~ Tx+6andy—a=x+2, we have, g =—2

Remember =1 -2) {By remainder theorom)
=( 2P+ 2V T 2)+6
= B+4b+14+6
=4k+ 12
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Giiven that remainder = —4

4+ 12=-4
=% k=16
=5 k= 4

9.1.2 Factor Theorem
Statement: The polynomial x—a is a factor of the polynomial f(x}iff f{a)=0.In
other words x — i 15 a factor of f{x)1f and only it x = & 15 the root of the polynomial
equation f{x)=10,
Proof: Suppose gix) is the quotient and & is the remainder when a polyvnomial f{ x) is
divided by x — &, Hill no x-term exists in the remainder, then by remainder theorem
fx)={x a)gx)+R
Suppose fla)=0 = R=0
SUx) = e a) glx)
{x —a) is a factor of f{ x)
Conversely, if (x —a) 15 a tactor of f{x), then fixy= (x — a)gix) for some polynomial glx)
flay=0
which proves the theorem.
Fxample 5: Show that x—2 is a factor of f{x)=x" — Tx+ 6 without factorizing.
Solution: Here, f(x)=x* Txté6and a=2
fA2)=2"-7(2)+6 (By [actor theorem)
=3-14+6=0
So, x=2is a factor of f(x).
. To determine if a given linear polynomial X —a is a factor of F{x), we need to check
whether f{a) =10,
Example 6: If x+1and x— 2 are factors of x' + p® + g + 2_Find the values of p and q.
Solution: Let f(x)=x"+p +gx+2
smee, x + 1 is g factor of f x).
So, fi-1)=0 = —l+p—g+2=0

p—g=-1 vark1)
Similarly, x—2 is also a factor of /{x).
So, f(2)=0
B+dp+-29+2=0
dp+2g= 10

2p+g=5..i)
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By adding (1) and (i1}, we have

p==2

Put p ==21n(i), we have

g=p+l==2+1=-]
9.1.3 Synthetic Division
There 15 a nice shorteut method for long division of a polvnomal flx) by a
polynomial of the form x —a. This process of division is called Synthetic Division.

To divide the polynomial pe'+gx’ +ox+d by x-a

alf 9 ¢ d <+— firstline
| | Ll L) Second line
‘:J/" Wl B!

(][ [0 =+— tudhne
*

L -
LS

Coefficients of S Remainder
quotient

Owuit Line of the Method:
(1) Write down the coefficients of the dividend fix) from left to right in
decreasing order of powers of x. Insert O for any missing term.
(i) Tothe lelfl of the first line, write @ of the divisor (x — a).
(i)  Use the [ollowing patlerns Lo wrile the second and third lines:
Vertical patter (4 ) Add terms
Diagonal pattern ( * ) Multiply by a.
Example 7: If (x = 2) and (x +2 ) are factors of x* =13x" + 36, Using synthetic
division, find the other two factors.
Solution: Let f{x)}=x" —13x" +36
=x' +0x" —13x" —0x+36
Herex—a—x—-2 =xy=2andyr—ag=-x+2=x—(-2) =x=-2
By synthetic Division:
211 0 -13 0 36
2 4 -18 -36
211 2 -9 -18 '[2
-2 0 18 ' “—— Remainder
1 0 -9 I (}a —

- Ouotient = 22 +0x+9= x - 90={x+3)(x—3)
Theretore, other two factors are (x + 3)and {x - 3).
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1

n

0

P EXERCISE 9.1 _d

Find remainder and quotient by simplifying the following

(i (33 -x+2=(x-1) (i) (*+12x" -3x+4)+ (x-2)

(i) (x5 -8 +13x+12)= (x— &) (iv) (5’ =3x +2x -1+ (x"+4)
(v (a'-5x'+4x-6)+ (*=3x+9)

Use the remainder theorem to find the remainder when the first polynomial is
divided by the second polynomial.

(i) »+5x+6 , x=2 (i) x+5x7+6 , x+1

(i) x'+x =x+x+1 ,x-1 {iv) x*+x"+1, x+3

(V) A kel

Use the factor theorem to determine if the first polynomial is a factor of the
second polynomal.

i x+1 ., x*-1 (i) x-2,%-5¢+6

(i) x+1 , ¥ +x +x-3 (iv) x=2, x +x —Tx+2

v x—3 e ail

Use synthetic division to show that ¥ 15 the zero of the polynomial and use the
result o factorize the polynomial completely.

i =Tx+6, x=12 (i} «"-28x—48, r=—d

(i) 2x*+7x —4x° - 2Tx—18, x=2,x=-3

Use synthetic division w [ind the quotient and the remainder when the
polynomial x' =10x" =2x+4 is divided by x + 3,

If x + 1 and x — 2 are factors of x' — I|'.l.1|'~ + gx+ 2. Using of synthetie division
find the values of p and g.

When the polynomial 41" + 2x + k" +13 is divided by x+ 1, the remainder is
| 6. Find the value ofk

When the polynomial x' +x” +x = kis divided by x—1, the reminder is 7. Find
the value ol k.

Use factor theorem to find the values of p and g if x+1 and x—2are the factors
of the polynomial x* + px’ + gx+ 3,

Use factor theorem to find the values of @ and 5 if -2 and 2 are the roots of the

polynomial 22 +dx* +ax+ b

9.2 Real Life Applications of Remainder and Factor Theorems
In this article, we will demonstrate how remainder and factor theorems are applied in

different arcas such as polynomial regression (uscd in statistical modeling), signal
processing (used [or [lering and error detection) and eoding theory (used in dala
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encryption and error correction in communication systems). These applications
highlight the significance of polynomial analysis beyond theoretical mathematics.
Polynomial Regression: It is a type of regression analysis where the relationship
berween the independent and dependent variables is modeled as an #™-degree
polvnomial, Tt is vsed when the data shows a curved (non-linear) relationship, but we
still want to fit a smooth, continuous function,

Example 8: Consider a data set of monthlv sales figures, A polynomial regression
model P{x)=x"+x" +2x+1 is fited to this data. If the observed sales in the

3™ month are 40 units, find the percentage error.

Solution: Error = Ohserved — Predicted = 40 — F(3)
Now, P =3 +3F+20+1
2719161 1=43
Error = 400 43 = -3

i—3
So, Percentage Error = E = 100 = 7.5%

Example 9: A quadratic regression model is P{x)=x" +ax+12. If regression model

fitted accurately at x =-3, then [ind the value of a.
Solution: By factor theorem
Il x =—3 i% a rool, then P31 =0

(=3 +a(=3)+12=0

g_3g+12=10
21 =3a=10
g =g

Digital Signal Processing (DSP): It is used in computers or digital devices to
analyze, change or improve signals like sound, images or sensor data. The remainder
theorem is a powerful mathematical tool in TSP that simplifies the evaluation of
svstem responses, stability checks and frequency analysis. If the remainder is zero, it
means that the system has no crror at that imput.
Example 10: A digital signal processing system is representad by the polynomial
Piz) =z — 32 + 22* + z — 5. Find the system response al z = —1using the remainder
theorem.
Solution: By remainder theorem

Remainder = P{-1)

== == + 2= 1P +(=)=5=1+3+2-1-5=0

Since P(—1)= 10, therefore the system has no error at z=—1




[

i
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Conzider a data set al monthly sales figures. A polynomial regression model
Plxy=x"+2x"+x-3 is fitted to this data. If the observed sales in the
5™ month are 240 units, lind the percentage error,

A dataset 15 modeled by the polynomial Pla)=x" —4x~ +5x-2. Find whether
the point x = 2 lies on the curve.

Designing a low pass hlter to remove high frequency nomse from an audio
signal, the filter is represented by the polynomial Pix)=x"+x" +2x+4 . Find
whether x+1 15 a factor,

Consider a signal processing system  represented by the  polynomial
S(x) = 2¢' 5 + 4x - 3, where v is the input to the system. Answer the
following questions:

(1) Ifthe input to the system i1s x= 2, find the remainder.

(i1) Determine whether the system has a specilic characteristic such that when
v =1, the system response becomes zero, 1f so, identify the factor.

Consider a signal represented by the polvnomial S0) =3¢ -2t 6 If the input to
the system is { =4, find the remainder by using remainder theorem.

Given a signal represented by ({{)=¢' -6/ +111-6, determine if the system
response is zero at f=4 . If so, identify the factor.

A received message polynomial is Pix)=x"+x"+x+! and a known error-
detecting palynomial is g(x)= x+ |. Find whether the received message is error-

free using the remainder theorem,



INTRODUCTION

In this section, we shall first establish the fundamental law of triconometry before
discussing the Trigonometric Identities. For this we should know the formula to find
the distance between two points in a plane.

10.1 Distance Formula: (Recall)

Let Pix,.v,) and O(x.. v, )be two points. If“d * denotes the distance between them,

then 4= P_g_.'il = J[.r: Y+ —p)?t

or = Ji, -2+ -2 )
Example 1: Find distance berween the following points:
(i) A8 B(3,6)
{(if) Pieosx,.cos y), Q(sinx, sin y)

Solution:

(i) Distance = | AB |=4(3=5)" + (8-6)" =yd+4 =22

(i1} Distance = |E)| = ..ch-:mx— sin x)° + {cos ¥ —sin y)°

i 3 . TP - 3 e o
= ,/CO8 x48in x=2c0Sx sinx +cos y+sin® p=2cos y siny

i - .
4 2—2cosxsmx—2cosy sy

,u-'i — MNeos xsin x+cos v sin y)

10.1.1 Fundamental Law of Trigonometry

Let & and /7 be any two angles (real numbers), then
cos{ex — F)=cosa cosff +sina sin

which is called the Fundamental Law of Trigonometry.
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Proof:  For our convenience, let us assume that o = 3= 0,
Constder a uwnmit cirele with centre at

origin O,

B cos B, sin )
Let terminal sides ol angles e and & cut
the unit circle al 4 and B respectively. ) T
Evidently mZ AOB = a - e o TR
Take a point C on the unit circle such that

meXOC=msAQR = o= .

Join A B and C .0

Now angles e, 5 and e — § are in standard position.

The coordinates ol 4 are (cos a, sin ).
The coordinates ol 8 are {cos #, sin §)

The coordinates of C are (cos a -4 | sinag -9 )
and the coordinates of [ are (1, 0.
Now A4O8 and ACOD are congruent, [(545) theorem]

Therefore, E| = |EJ'| = E:z = |-:'_‘J'_J !

Using the distance formula, we have:
(cos & —cos FY + (sin a — sin BY = [{cos(a—F-11 + [sin (-5 - 0]
=  cos’ a—cos § -2 cos acos 8- sin’ &~ sin® f— 2sin @ sin 8
= costa - A+ 1 =2 cos{a - F) + sin’(a - B)
= 2=2(cos acos f+sinasinf)=2=2cosia = )
Hence cos (@ — = cos e cos 7+ sin a sin
m Although we have proved this law for o = 8 =0, it is true for all values of o and 5.

Suppose we know the values of sin and cos of two angles o and S, we can find
cosi iz — ) using this law as explained n the following example:

. . - 5.'
Example 2: Find the value of sin %

Selution: Az % =755 =450 4+30p = F %
12 4 6

- .[ﬂ'ﬁ‘.f; T T .

§in — = gin| —+— |= 5iN — COs — + COs — 8in —

2 4 6 ) Ta g gt

ol it AL O S
N I R
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140.1.2 Deductions trom Fundamental Law
1. We know that:
cos(a — ) = cos @ cos J+ sin a sin F

; R
Pulting e = o oL, we gel

{ n ..
CONS | == = = LC0E — O05 +KI'I]—HI]I‘|'3
\ 2 'E] 7 008 2

i

= C0s (

(R

—,BJ=[I'.|:|::5,E?-I 1.sinf

’ T T M
L cos— =10, sin= =1 |
2 2

A

=

cl:rs(— -8 ]= singl (i)

\

Il

i We know that:
cos (= =cos acos J+ sin a sin 7

. A
Putting = - % in i, we get

[ 4 ;r]] [ T )
C0E ﬁr—l —— | =08 . cos| —
b E,J “ 23

A1

) . T
+ BIN F 51N [— l
2)

i E\ i
5 sin| == |==sin= =-1
) . L 2 2
—¥ cusLa+?li=cosa.D+sm:z{—l] .
i cns}—llzcﬁs’?—:ﬂ
L2, 2
CIs [£+ﬂj=—HiTﬂ (i1}
o2
3. We know that:
‘7 . .
cos[E—,ﬂ] = sin [{i} above]

Putting # = %4, o init, we get

i [}T -l ; [r‘l‘ \'
Cos | ——| —+4 | = 50| —+
A 4] 2" %)

LY “ 4
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3 g
=  cos(—a) = sm(?-i-a)l

-

{x

= cosa — sin | —+er [ cos(-@) = coser |

- .
: 'IF.T
5m|—+rx = CO0F (1)
W2

- We know thai
cos{er — f) = cos o cos f+ sin o sin f
Replacing # by 7 we get
cos[a—(— )] — cos @ cos (— ) | sin g sin (— 5)
L cos(— ) =cosf, sin{ )= siu,ﬁj
=5 cos (e + 1) = cosa cos ff—singa singd (iv)
5. We know that:

cos(a = M = cos a cos {7 — sin o sin 7

Replacing o by : For, we get

i

v 5 f g y
cos LE;H [+ | =cos £+|'IJE.:[}HI,I"I'—Hi]'IJ'(ﬁ—+FI Jﬁinﬁ
TR 2 Ia

= — sin & cos 1 — cos a sin

= —sinfg+#) = —[sin a cos #+ cos o sin [f]

= ﬂﬂﬁ’rg+{-r;r +ﬁ}j

sinfa + ) =sing cos i + coser sinff (v}
6 We know that
sinfex + /) = sin @ cos f+ cos a sin 7 [[rom (¥) above]

Replacing & by — 8, we get

sin(e — 1= sin @ cos (— 9) + cos a sin (- /) { it:tli:__’i}] ; :;‘:}‘f

sinfe ~ 1 =sina cosff -~ cosar sinfd {vi)
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We know that:

<> s O

cosl iz — 1 = cos @ cos [+ sin - sin 7

let=2gand f =¢

cos(2x — ) =cos 2x . cos @+ sin 2xsin @

. fcos 2 = |
=1:-cos @+ (- 5sind % i
|sin 2z =0
= cos & {vii)
H.  We know that:
sinfer — ) = sin @+ cos F— cos o+ sin 4
sin 27— &) = sin 24 - cos 00— cos 2 sin O
. sin 27 =0
=0.cos#—1.sm# [
'[cuH dr=1
=—s5in & (wiil)
N sinfer + )  siner cos B4 cosa sin
2, Enier + ) = = T —
cosle + ) cosc cosf —sina sin
sine cos i cosa sinff Dividing
_ cosa cos i cosa cosfi numerator and
cosa cos i sina sin denominator by
cosa cos T cosa cos cosa cosf
tana + tan ,
tane + /3 ) w SRE T (ix)
| = tang tan 7
sinfer — 73 sinez cos fF—cosa sin 8
10.  tanfe— B) = L o il
cos{—fF)  cose cosf 4 sing sind
singr cosfl coser sin fF Dividing
_ cosc cosfl cosa cosff numerator and
cosa cosfi | sina sinf denominator by
cosg cosfl cosa cos 3 cos e cosf
tana — tan /i
lan(ee —f ) =———— {x)
A) 1+ tane tanf3
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10.2 Trigonometric Ratios of Allied Angles

Twi angles o and { are said to be allied, 1T+ =), ne =

For example, + a, 907 +a, [80° + o, 270° — a and 3607 + a are some allied angles of .
Using fundamental law of rigonometry, cos(a— )~ cos g cos FF sin arsin F and its
deductions, we derive the following identities:

™

: Y ¢
ﬁin[i—ﬁ"]z Ccos UUH[E—H |= s i, L'm| E—ﬁ' J=L'{]t )
2 2 J 2

ll “l
sin [%ﬂ? =qgos @, uus[%ﬂ? i= sin &, 1an[%+§ \l= —gol

J

& F

Isin(:r—ﬂi‘]—sin{? ,cos(m —)=—cos &, tan(r — &) =—tan &
lsinfﬂ +M=-sind, cos(w+ N =—cos 7, tan(r + M =tan J

.| 3 1 3 i , 3 3
sin - |l=¢co5 8 , uu:«i[—}r—ﬁ? l=—sin &, tan —K—E' |=I.:L}L i
2 2 g ey

J J

Fh

i |

s K ¥ T 3; k
s'm[ ;H? |:—|.:ns E?.eﬁs[?:r-{? |:bmﬂ .tan(TT+ﬂ J:—mtﬂ'
i .l'l i

P kS

J sini2x N =-sin &, cos(2r - N =cos &, tan{2x —J)y=—tan &
]_ sin(2x+&=sin @ ,cos(2r+&)=cos @, tan(2xr +@#)=1tan &

The above resulls also apply o the reciproculs of sine, cosing and tangenl, These resulls

b

are: (o be apphed frequently in the stedy of mgonemetry and they can be rememberad
by using the following device:

If & is added to or subtracted from odd multiple of right angle, the
trigonometric ratios change into ce-ratios and vice versa,

: o — — —
e, sin g cos, tan Z—* col, sec Z—> COSEC

eg. siu(i—ﬁw - cos & and cas[j—f+ﬂ ] ~ sin
vz 2

If & 15 added 1o or subtracted from an even multiple of %., the trigonometric

ratios shall remain the same.

So far as the sign of the results is concerned, it is determined by the quadrant
in which the terminal arm of the angle lics.

eg. sinfx— ) —sin @, tan(x+ ) —tan &, cosi2ar— 0)—cos O,
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Measure of the angle | Quad.
Iy
Z_o I
2 sIn +ve All +ve
T
—+ 0 ora—@& m x x
2 <t
3
m+dor 5 o il tan +ve cos +Hve
% +8 or2n—#@ IV ¥

[ 1 ’ T o203 o U
{a) In sin| E—l‘?], 5in[£+ﬂ : H]TI[—E—H] and sin| —+# |['r{1i.'|
2 B - o e L2 J

Uas T :
multiplies of E:m: involved.

Therefore, sin will change into cos.

Moreover, the ansle of measure
> =

¢ )
D | %—HJwill have terminal side in Quad. L.

-

S0, sin [E-—ﬁ ] cos 7
2

4

(i) | %m]mu have terminal side in Quad. 11,

' LY
So, sin l?-'-ﬂ J= cos

dr

[ 3
{iii) | ?"I —0 ]wili have terminal side in Quad. 111,

5,

%
S0, sin [%—ﬁ |= —cos @;

5,

" 3;
{iv) | %+E ]wil] have terminal side in Quad. TV,
\ 2

A

Ko, sin [%—{3 J=— cos (2
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(b) In cos{w = &), cos{wr + &), cos(Zr - #) and cos(lx + #), even

. i .
multiples of 5 are involved,

Theretore, cos will remain as cos.
Moreover, the angle of measure
(1) (m— &) will have terminal side in Quad. I1, therefore
cos(x— ) =-cos @
{11y (x+ &) will have terminal side in Quad. 111, so
cosimt = —cos @
(i) (2o — &% will have terminal side in Quad. TV, so
cosi2r— )y =cos
Ov) (2x+ &) will have terminal side in Quad. 1, so0
cosi2n + &) =cos @,
Example 3: Without using the tables, write down the values of:
(i) sin225° (i)} tan 600° (iii) eot(=225%) (iv) cosec (—4207)

Bolution: (1) sin 225° =gin (B0 + 45)° = —sin 45° = — L

J2
(i) tan 600F = tan (540 + 60)° = tan (6 x 90 + 60 = tan 60° = 3
(i)  cot (=225°)=—=cot 225" ==col{ 180 + 45)° = —cot(4=HH45)" = —({—cot 45"} =1
(iv)  cosec(—420°) = —cosec 4207 = —cosec(3I60 + 60)° = —cosec( 4= HHG0)F"

-—ms,e-:ﬁ[}“—i

_‘.'_;
S 180° — ) cos(360F — @) tan(Y0° + ()
SIn(0° — &) cos(180F = @) tan{ 2707 + &)

Example 4: Simplify:

sin{180° -8 =sinf  , cos(360° — ) = cosd
Solution. Because A tan(90° +#) =—coté , sin(90°-#) =cosd
||_cus{18l]'*+ﬂ}:—cusﬂ?, tan( 2707 + i) = cot
sinf-cosi- [—cotd) —sinéd
cos - (—cosd)- cotd —cosf

Therefore, = lan
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=

f

V~ EXERCISE 10.1 4

Without using the tables, find the values of:

(1) cos{— 1230F) (11) tan (— 1035%) (111) see(11407)

(1v) coscel— 6850 ) {(v)  cot(1320°) (vi) cos (= 240°)
Express each of the following as a trigonometric function of an angle of positive
degree measure of less than 45°

(1) cos 168° (i) sin 1927 (1ii) cos 333°

(iv} tan 2137 (v] cos{—435%) (vi) sin 2197

(vit) tan (— 5977} (vt} cos (—111%) (ix] sin (—3907)

Prove the [ollowing:
(1) sini180° + &) sin{™) — @) — - sin & ¢os

(ii) sin 8107 sin 630° + cos 135% sin 225° = -%

(i) tan 1507 cot 3307 — 2sec 1357 cosec 225% =3
(iv) sin 2107 4+ cos 240% + tan 223° 4 ¢cot 225° = |
Prove that;

tan{ 180" +ar) cot( 90— |

(1) — S0 2

Sin(360° — e ) cos(2707 +a )

sin’ (7 + ) tan[ 3; +& J
(ii) 73 < = =cos &
cot’ %—ﬂj cos’ (7 — ) cosec( 27 —0)

cos(20° &) sec(—7) tan(180F —#)
sec( 3607 — @) sin(180° + &) cot(90° — )

| 5'.-'-; “'
i zunl = d =

i { 37 Y S 3 (A
Show thal: sec - mec] — —# |—tan

1 3 | 1 | | =
| y |

If e, [F, » are the angles of a triangle ABC, then prove that
(1) sin{e+F)=siny (i) sec [&;‘B | l.s:.,';
1 .
(1) coserr =———— {1v) tan (e + 5 —tan =1L
sin{ f+y)
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10.3 Further Application of Basic Identities
Example 5: Prove that: sin(a +#) sinfe—#8) =sin° a—sin- § (1)
= cos f—cos- a (11)

Solution: LH.S. =sin (@ + ) sinlae — 5

= {sin o cos 0+ cos o sin D (s5in @ cos 7 — cos @ sin )

= sin’ e cos® § - cos’ @ sin® B

= sin® af1 — sin® B} — (1 — sin” @) sin” #

= sin” @ — sin” @ sin” f— sin® @+ sin® @ sin” §

= 5in® &~ sin® 3 (i)

= {1 -cos® &)— (1 - cos’ f)

=1-cos’ a—1+cos’ §

= cos” ff—cos® {11}
Example 6: Without using tables, find the values of all trigonometric functions of 1057
Solution: As 103° = 50" + 45°

sin 1037 = gin (607 + 45%) = sin 60° cos 457 + cos 607 sin 437

(Bl ey

cos 105° = cos (607 +45%) = cos 60F cos 45° — sin 607 sin 437

=f1“(¢]_"£“(r _1=V3
sleHi el =
tan 607 + tan 45°
1—tan 607 tan 45

1..I'§+1 l+\.|'r§
T g T
1 1-43

tan 105° = tan (60F + 435%) =

cot 1037 =

tanl05°  1—+3
cosec 105% = — ! =\ﬁ+|
sinl05° 2.2

1 22

and sec 105" — =
covs [ 05" I—\d@
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' cos | 1%+sin1l”
Example 7. Prove that: : = tan 56°
cos |15 —=in 117

Solution: Consider
tan 43 +tan | I

l—-tand5®tan11®

FE.H.5= lan 56" = lanl{d-ﬁ“ +11%)=

sinl 1°
_1+tanll® quﬁllu_cusllhsinll“’_l HS
Cl-tanll® | _sinll® o ocosl®—sinlle
cosll®

cosll +sinll

Hence =tan 56

cosl I -—H'iTI I.l'
.
Example 8: Ifcos o —— %, tan 9 1?', the terminal side of the angle of measure o

is in the Il gquadrant and that of & is in the I quadrant, find the values of;
(i} sin (e + f7) (i) cos{a=+7)
In which quadrant does the terminal side of the angle of measure
(e + ) lie?
Solution: We know that sina +cos” @ = |

; r 7Y 576 24
Therefore, 1T X =:1,||']—1:¢m'rz =z l-|-—| =%, |— =2 —
7 A 25] IR T

As the terminal side of the angle of measure of & is in the 1l quadrant, where sin « is
positive.

S0 N cr = -E

23
Now secfl —+ fl+tan’ ff =+, (1+ ET—tE
' ' 5 5

Ag the terminal side of the angle ol measure of #in the gquadrant 111, 50 sec 5 is negative

13 5

gec B =— and cos = — —

5 13
. 5 144 12
=+ f1-cos’ i:i,fl—r——] =t =t
i oo I\ 13 1649 13

As the terminal arm ol the angle ol measure £ is in the 1 quadrant, so sin 5 is negative

s 12
gin ff =— —
2 13
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sin{a+ ) =sina cos ffi+cosa sinff
=.f’E‘\_5- ( |f’ 127 -120+84 _ 36
L2s A 13; L 2s ) 13) T 3zs 325
and  cos{a—F) =cosocos f— sinwsin §
f TY 5 (24 12N 354288 323
k_E '.._ﬁJ_l\E ;'\_E] 325 325
As, sinia + F)is =ve and cosia + F)is +ve
Thus, the terminal arm of the angle of measure (@ + 7 is in the quadrant IV,
Example 9:  If o 3, yare the angles of A ABC, prove that:
(i) tane +tan ¢ tan y = tan ¢ tan 8 tan ¥
il g . 7 ¥

¥ fx I
{ify tan — tan—+tan— tan=—+tan— tan— =1
2 2 2 2 2 2

Fa “ = =

Solution: As «.f, y are the angles of A ABC, therefore

atf+y =180
a+f =180F =y
(i} tan{e—F)=tan (1807 = #)
tan ez + tangd
———— ==my
l—tane tanf

tan ¢ + tan # = —tan ¥+ tan g tan 4 tan y
tan e+ tan G+ tan ¥ = tan @ tan § tan ¥

g e B oy
A + -y = 180° — =9
() As a+f0~+p =5 2+2 :

0¥ Fil
tan — -+ tan " |
2 2

¥
= oot —=
l—uﬂ'lE tzm”E 2 IEtr'LE
2 2 2
tElT‘IEt +1:.rm‘Iﬂ tdny | — tan — t:mE
2 2 2 2
ltmElai.nlIIr —rl.jn‘l'lr‘f Lin — +lHJ'I£ ltmE 1
2 2 ) 2 Z
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Example 10: Express 3 sin @+ 4 cos #in the form » sin{@ + @), where the terminal side
of the angle of measure ¢ is in quadrant 1.

Solution: Let 3 =rcos ¢ i1
and 4 =rsin ¢ {i1)
Squaring then adding (i) and (i)
3+ 4% =4 cos® g+ sind ¢
Dividing (1) by {1)

= 9416 =r"(cos'd+sing) Aol
X 3 rcosg
= 25 = 4
= S=F 3 = tan ¢
= r=5
lang = —

3sin @+ 4dcos @ = reosgsin &+ rsin ¢geos £
= r(sin #cos ¢+ cos B sin @)
= rsin {8+ @)

4
where =3 and ¢ = tan™' 3

P~ EXERCISE 10.2

I Without using table find the values of the following Hint:
(i) sin 15° (ii) cos 15° (iii) tan 15° :[ﬁ]- ["i“]-}f;g and
1 r 1 I.u‘= :+ .
(iv) sin 103" (v cos105° (vi) tan 105" sl ]
; y |
2. Prove that: (1} sin{45° +a)= E{mn &+ ey ix)

(i} cos{e +457) = LLms o — sin o)

2

3.  Prove that: (i) tan (45" + A)tan {45° — 4) =1

"H.I '\I 'l
(if) mn[i-ﬂ |+tan[£4ﬂ JFo b 51’n(ﬂ+£]—l—cuatﬂ+r—)=mﬂ
4 4 6 ) 3
_ g
siné& —cos & tan — g
(iv) 3_mn5 )

cos < sind? lﬂll;

|- tand tang _ cos(0 +¢)
I+ tanf tang  cos(é—g)
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Show that: cos(a + ) cos(a = ) = cos” @ — sin’ §=cos® f—-sin’ a
sinfer + F)+sinfex — )
cos{ar + F)+cos{a — 8)

6. Show that: (i} cot(a | 8) coter cotff 1

N

5. Show that: = lan ¢r

coter + cotfy
s cota cotf +1 ..., taner+ tan sinfa + /7
(i) cot{i@-G = cubd patpl 1 (iii) AR , Chelos,
col f§ = cola taner —tan /7 sinfa - )
show that;
l+tana ta ; . 1tcote tar
(i) cos{e—f)= S g (i) sinfa+# ]:—“ﬁ
seca seeft © o coseca seef
. coter cot +1 . langr + tan sinfer+ [
(i) cot (o — 5 —tﬁ (iii) i =— (il
cot ff — cotr tana —tan ff  sinfa— M)
W) G+ ) cote coifd -1
v GO |6 S e o
cota + cotld
. 24 20 -
8. Hsmae=— and cosf= = where O0<a<— and 0< 8- =y
; " 333
Show that sin(e—g) =—".
" i L -
. I sinog=- T and cos f= —j where = L@ 2 and g < 5= = Find
(1) sin{e+ 4) (1) cos(o+ /) (1ii) tan e+ 4)
{iv) sin(a— &) (v) cosie—Ff) (vi) tan (ez— 4).

In which quadrants do the terminal sides of the angles of measures (o + /) and
(ar— 7)) lie?

10, Find sin (@ + ) and cos (@ + #), given that
. 3 3 . . . 5
(1) lane= 1 cos fi= 35 and neither the terminal side ol the angle of measure
ar nor that of F1s in the quadrant L.

(ii) tan == % and sin f=- % and neither the terminal side of the angle

of measure o nor that of # is in the quadrant IV,
. » cos |9 +sin 19° T
. rrowve that: N =1dan 2
coy 197 —sin 19

12, Prove that: cos{60® + &) cos(G0® &) + sin{60”° + &) sin{60° &) = cos 26




Trigenometric Identities ~<@> Mathematics (_

13. [Ifa. f » are the angles of a triangle ABC, show that
[ i
cot — El-.-lt{{}' I CDEE =cot— CGIE ot E
2 2 s =

4, If e+ 0+ y= |80, show that: cotg ¢ol f+col ff coly+coly cola =1

15. Lxpress the following in the form  rsin(@ + g)or #sin{@—¢) where terminal
sides of the angles of measures # and # are in the first quadrant:
(i) 24sinf+Tcosd (i) 12sm&-5cosd {111) sin &—cos &

(iv) 8sin? —6¢cos @  (v) %s'm - % cos @ i(vi) 13sin @ — 8dcos O

o

10.4 Double Angle ldentities

We have discussed the following results:
S0 ez + F) = sn er cos F+ cos oosin A

cos{@+ ) =cos o cos f—sine sinff and tan{e+ J)= ol 8
| —tane tang?
We can use them to obtaim the double angle identities as follows:
(i) Put f = in sin{a+ ) = sin @ cos f+ cos a sin 7
sinf{a+a) = sing cos ot cosa sina
Hence sin2a=2sina cosa
(i) Put F = m cos{e+fFf)=cosa cos f—sina sinfd
COS(er + ar) = CO8 & COS o — SN S0 a0
Hence cos 2 @ = cos® o —sin’ a
cos 2 @ = cos” & = sin’ &
cos2 @ = cost a—(l -cos® @) (= sin* @=1-cos’ @)
= cos’ @~ 1 +cos® @
cos2a=2cos’ o |
cos 2 e = cos® o — sin’ e
cos 2 ¢ = (1-sin® @) - sin® @ (+ cos®a=1-sin’ a)

cos2a=1-2sina
tan e + tanfs

(1ii) Put F=eintan(o+fj= —————
| =tane tanf
tan e + tanc
tan(ar + ) = —8M8M8M8M8
l—tana tana
2tana
tnda = ——s—

I—tan~ a
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10.5 Half Angle Identities

The formulas proved above can also be written inn the form of hall angle identites, in
the tollowing wuy:

E 1 O
(i} coso=2cos” = | = cos®

i)

ta | R
|
—

"l
Il
)
=
=

b | =
1l
H.
=

g
e
|

=
&

5 : o .2 fF g
fn) cosa=1-2s5n 5 = §I- —=——— =% 5N —==

2
s‘na fl—cfrsc:r
i izt o
i £ | —cose
(i) tan —= Z_4 2 = z |—
% 2 I+ cose

o o
um? Jl+wsa

2
10.6 Triple Angle Identities
(i) sin3a=3sina-4sin’ a (i) cos3a=4cos’ a—3cosa
Jtan o —tan o

{1ii) tlan 3 = -
|=3tan” o

Proof: (i} sin3ae =sin 2+ a)
= 510 2er cos & + 005 2o $I0 o
~2sin@cosercos @+ (1 —2sin’” @) sin
= 2 sin @ cos® & + sin o — 2 sin” o
=2 sin @1 = sin® &) — sin & = 2 sin’ &
=2 sin @ — 2 sin”® & + sin ez — 2 sin’ ¢
sindg =3sina-4sin’ a
(1) cos3a  =cos (2o +a)
~ 03 2 cosa—sin 2a sin @
= (2 cos® ar— 1) cos a— 2 sin o cos o sin o
=2 cos’ @~ cos =2 sin” @ cos a
=2 cos’ @ —cos a— 2(] — cos® @) cos a
=2¢cos’ @—cos o —2cosa+ 2cos’ @
cos 3 =dcos’ a— 3 cos e
(iii) tan der = tan (2a o)
lan” cr + tang

|—tan’ & tane
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2tana
————+lan e =
| —tan” & HMano + taner —tan” ex
- = ] 2
- Imnff! SR | —tan” @ - 2tan"a
| —tan "o
. Ftan i —tan’ e
tan" g = —
1-3tan” e
Example 11: Prove that: Rini + S At = tan
1+ cosd +cos 2
Solution: LIS — ﬁinﬁ'+23ir|ﬁ'c;nm5' _s:inﬁ{l +2cosd)
I +gosd+ 2cos” -1 cos@(1+ 2¢cos8)
sinA
=Y - tang=RHS.
cosf?
sind? + sin2éd?
Hence : - =tan#?,
[ +eosé +oos2d
e 2tand .. |—tan’ &
Example 12: Show that: (i) sin28 = —— (i) cos2f=—xon
[+ tan” & [+ tan” &

T I ey
Sulbiien: () En8 =3 An e R = 2sind cosf?  2sinf! cost

] cos” @ + 54
2siné? cost! . sind
= cos 6 = cosfd
cos” @ +sin’ @ cos 8 sin#
cos @ cos 8 cos'd
2t
sin 2@ = —-mlf}
1+ tlan” &

a ¥ .
cos* @ —sin® @ cost @ —sin*d

(i) cos 28 =cos” #—sin” @ = = — —
1 cos” (4 sin ¢

cos' @=sin’@ cos’@ sin'd

cos” & B cos" @ cos' @

cos’ 0+ 5in2f  cos’ o o sin’ @

cos @ cos f cos' @
l—tan’ &
cos 2 = ———
1+tan" @
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Example 13; Reduce cos* & to an expression involving only function of multiples of
@, raised to the first power.

Solution: We know that:

1+ cos28

2c082 0 = 1+cos20 = cos O - :

cost @ = (cos? OF = [—Hc;ﬂﬁrﬂ

_ 1+2cos 215' +cos’ ¥

]I[ 142 cos 20 + cos® 28]
_ l[ Socs i I+L'.\n*.4|'?|-|
4 |

;[3 F4eos 26 4 cos 47

P~ EXERCISE 10.3

1. Find the values of sin 2e, cos 2¢ and tan 2, when:

; : Bd i 120
(1) &ing =— (i1} cose = . where (=g {E
; 164 2
2. Prove the tollowing identities:
: . sin 2er
(1) cola—tana=2 ool 2a (i) ——— =tana
|+ cos 2ar
| —cosa o . COs Oy — Slr'ln’l
(i) —————=tan — (iv] ————————=secte —tan
S1rLEk 2 COS £ + Sine
o Frd
) | +sino i 2 b 2 (vi) r;uhg.r:ﬁ+2caﬁﬁc25 mﬁ"
v : = ¥l =0l —
\ I —sina - sectl i
s 2
.. .... 25iné# sin 28
(vii) | +tan ¢ tan 2 = sce 2o {vill) ——————— =tan 2@ tand

cosd 4 cos A
N S T~
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(ix) 51T13|:?_casﬂ B @0 r:::rs:‘-:.’}'_rP SLﬁ}E.:4mszﬂ
sinfé cosf cosf sind
tan — = et — :
(xi) —2—2=sec0 (uii) 230, €S0 _ 5 cot20
col—— Lan— cosg  sing
2 2
e, dcosdd 2 " . . 1 +5n2#8 S 1
— = —| tan” & L a ) ——=tan*| = +8
() 1—cosde 2{ i ) (x) | —sin 2¢ \ 4 v,
ix . 57 ST

=2

b s
(xv) cos’ =+ cos” —+cos’ —+cos
bt 8 !

Show that! 2oosX =242+ Zcosdd

Egdi

4,  Reduce sin® @ to an expression involving only function of multiples of @, raised
Lo the hirst power.

5. Find the values of sin #and cos & without using table or calculator, when #is:
(i) 18° (i) 36° (iii) 54° {iv) 72°
1
Hence prove that, cos 367 cos 727 cos 108° cos 144° = E
Hint: L2t & =18° Let &= 36°
56 =90F 56 = 130
(301 20) — 9P 30420 - 180°
g =9 —2¢ g =1800 - 20
sin 3 = zin(90° = 24 ele sin 340 =sinf [80° = 20) @1,

10.7 Express the Product (of sines and cosines) as Sums or
Differences (of sines and cosines)
We know that:

sin{ex + J} = sin @ cos fF + cos a sin (i}

sin{ee— ) =win o cos f — cos asin (i)

cos (o~ 1) =cosacos fl —sinasinf (1)

cos (=) =cosecos f +sinasin g (iv)
Adding (i) and (ii) we get

sinfex + 3) — sin(e — 4= 2 sin @ cos (v}
Subtracting (ii) from (i) we get

sinfa + ) — sin(er — )= 2 cos e sin /1 (vi]

Adding (iii) and (iv) we get
cos(a+M—cos (e— F)=2 cos @ cos 7 (wil)
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Subtracting (iv) from (iii), we get
cos{a+ ) —cos(e—F)=—2 sin @ sin 5 (widl)

So, we get four identities as:

2sin e cos = sinfa + N —sinfa -5

2eosasinf - sinfo F ) - sinfa - )

2eosacosf§ = cos(a + ) + cos(e = )

—2sinasing = cos{io = ) — cosla— )
Now putting e + = Pand @ = = (), we get

= P+Q and § = —P_Q
2
sin P+ sin ) = 2sin Pre COs il
2 .
Siﬂp-ﬁiﬂg;zi:ﬂﬂp-l-i SN £-g
i 2
cos Ptreosd = stp Q i
2 2
cos P—eos 0= —2smn £ rz 2 1M P;Q

Example 14: Express 2 sin 78 cos 36 as a sum or ditference.
Solution: 2 sin 7@ cos 32 =sin(7@0+ 38 + sin( 768 = 30)

= sin 108 — sin 48
Example 15: Prove without using table / calculator, that

sin 19" cos 117 45in 717 sin 117 =

bt | =

Solution: L.IH.5=sin 19° ¢cos 11° + sin 717 sin 117

= [ 25in 19 cosl1°+ 2 sin 71° sin 11°]

;[{un{]‘}‘+f1 }+sin{19-11° }} Jcm 717+ 11%) —cos{ 71° - II“]}]
= L sin 307+ sin 8% — cos 827+ cos 607

.

14 i S l
= S 5in % —cos{ P —H2)+ —
2|: s1n cos( } —,}
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51 [ | : T
=E[;+sm 8% —sin B"+E] " cos 82° = cos(90F — %) = 5in 8%)

i

Hence, sinl9° cos 117 +sin71° sinl 15 =

b | —

Example 16: Express sin 5x + sin 7x as a product.

; . . . . Sx+Tx Sx—Tx )
Solution: sin 5x + sin T = 2sin 3 COS 3 = 25in 6x cos(—x)

=2 5in Hx cosxy (" cosi—&)=cos &)

Example 17: Express cos £+ cos 3¢ + cos 5¢ + cos 76 as a product,
Solution: cos @~ cos 38+ cos 58 ~ cos 78
={cos 3@+ cos @)+ (cos TO+ cos 58)

B+ P-4 H+8 18 -50
CO5 + w

= 208 2cos Cos
2 F

=2 cos 20 cos &+ 2 cos 6F  cosd
=2 cos #i{cos 60+ cos 20)
68+ 28 66— 28 |
cos |
2 2
=2 cosd (2 cos 48 cos 28 =4 cos & cos 20 cos 46

= Ecasﬂ[kﬂs

|
Example 18: Show that cos 207 cos 407 cos BUF = 3
Solution: L.H.S=cos 20°F cos 407 cos 8(0°
I
- 1 (4 cos 207 cos 407 cos 807)

% [(2 cos 40° cos 20°) . 2 cos BU0°]

i[{cm 607 + cos 20°) . 2 cos 80°]

]|:[1 b oos 208 -EWSED“—l
4142 J

ey
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i{cus BF = 2 cos 80° cos 207)

jI{cos B0 + cos 100F + cos 60°)

%[ms B0F + cos(180°F — 80™) + cos 60"]

- %[ccs E[F—ccrsﬂﬂhlzﬂ [ cos(180—&)=—cosd ]
_ 1(1]; e
4.2) 8

Henee, cos 20° cos 40°F cos 307 = l

5
V' EXERCISE 10.4

.  Express the following products as sums or differences:
(i) 2sin3f cos # {(ii} 2cos 560 sin 36
(i1} sin 58 cos 20 {iv) 2 sin 78 sin 28
{(v) coslx—1)sin(x—y) (w1} cos(2x + 30F) cos(2y — 307}
{vit) sin 129 gin 467 {vitiysin{x + 45) sin(x — 45%)
2. Express the following sums or differences as products:
(1)  sin 58+ sin 38 (i} sin 87— sin 48
(i) cos 68+ cos 38 {1v) cos 7T#—cos A/
(vl cos 12% —cos 48° (wi) sit(x + 30%) + sinx — 30°)

3. Prove the tollowing identities:

: T s e 7
@ sin 3x BNX _ oy i) sinr+sindy 5y
COS X = O05 3x COSBT+cos 2y
i in.A—sin 8 A-B A+ B ; sin B0 = sin 400
(i) 02— gan cot (iv) - coily
sin .4 +sin & 2 o cos Bl + cosdl)

4.  Prove that:
(1) cos 155+ cos 1057 toos 195" + ooz 2857 = ()
sin 20 | sin4 + sin6d | sin &9

(11) _ = Lun 5¢
cos 20 4 cos 47 + cos bl 4 cos &
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(i) cos’| E—ZF |- cos Z+Z% Lsina
4 2 & 2

sin ('Eﬂﬁ' }— lmsiﬁ'
4 )

*

i
(iv) sin| = -@
4

A

sINE +51n 39 + 5 5F + s TH
(v) = tan 447
cosfd + oos 39 + cos 5+ cos TR

Prove that:
(i) cos 20° cos 40F cos 60F cos BOP = %

- ., ®X ., 2x ., ow , 3
(i) sin— sin— sin— sin— = —
9 3 9 16

T e o ik =

(i} sin 107 sin 30F sin 307 sin 70 =E

Prove that: ﬂ— = sinf?; deduce the value ot sin 157
1+ 2cos 28

Prove that: tan 75° —tan 15" =243

= & a I
Prove that: cogls —sinls" =——

J2

sin & —sin* 3

Provie that: = tan{ o +/7 )

Sin g cos e —sin 7 cos 7
Prove that:

sing +sin g +sin y —sin{a +ﬁ+y}:4gjn(“+ﬁ ]Siﬂ[ﬁ;‘?]sin[TﬂIJ

A 2




Trigonometric Functions
and their Graphs

INTRODUCTION

In this unit, students will explore key concepts essential for understanding the role of
trigonometry in mathematics and its real-life applications. We will begin by learning
how to determine the domain and range of trigonometric functions 1o understand their
behavior. Next, we will discuss even and odd functions, along with their periodicity,

which cxplams therr repealing pattems.

Students will then leam how to graph and analyze sine, cosine, and tangent functions,
following this, we will focus on calculating the maximum and minimum values of
sinusoidal functions and examining their unique properties such as amplitude,
frequency, and phase shifts.

Finally, students will apply these trigonometric concepts to solve practical problems in
navigation, engineering, and physics, including calculating distances, optimizing solar
panel angles, and analyzing forces in structures. Mastering these concepts will enable
students to solve hoth theoretical and real=world problems using trigomometry.

Let us first find domains and ranges of trigonometric functions before drawing their
graphs.

11.1 Domains and Ranges of Sine and Cosine Functions

We hawve already defined trigonometric functions sin H
i, cos &, tan &, csc &, sec & and cot &, We know that
il P{x, ¥) 15 any point on unit circle with centre at the 1800
origin €7 such that m<XOP = @ is standard position, / ks
then i : Ad >
- -1, 1l al oz M Laim
cos =% and sind = \_\ /
= lor any real number & there is one and only one q.__Ii_Gf/:
value ot each x and p e, of each cos #and sin & '

Hence sin & and cos & are the functions of & and their +  Figure 11.]
domain is 7%, the set of real numbers. .
Since P(x, 1) is a point on the unit circle with centre at the origin O, therefore
-l=x=1 and =1Ly <]
= -1=cosd =1 and -1 £sind =1

Thus, the range of sine and cosine functions is -1, 1].
—
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11.1.1 Domains and Ranges of Tangent and Cotangent Functions
From the Figure 11.1,

(i)

(i1}

tan & = "E?I?‘ﬂ

= terminal side G.’; should not coincide with OF or QY {the ¥-axis)

= g+ iE,L__S—FiE —?r?.
2 2 2

= G {2n- l}%, where ne £
Domain of tangent function =R - fx | x={2n+ 1) %,HF ZY

1 1
Ify— 1, tan 8 — =88 X — 0, == g therefore the range of tangent

function = R = set of real numbers.
From Figure 11.1

cot = i,_l’?ﬁ 0

L

terminal side O2F should not coimcide with QX or QXF (the Xeaxis)
= 0,ztmtlx,...
&+ nm,wherene Z
Domain of cotangent function = R - {x |xr=nmne £}

Lyl

Hx=1cotB= %as y— 0, Fl—r + w therefore range of cotangent

function = B = set of real numbers,

11.1.2 Domains and Ranges of Secant Function

From the Figure 11.1

1
5cu§=—_,xa¢[}

X
= terminal side COF should not comeide with OF or OF (the F-uxis)
g5 =m

= Bk =,

= f=2(2n+t 1}%. where ne 2

Domain of secant function=R - { x| x=(2n + 1) %, ne £}
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1 1
As O=x<l s0, —=l.zecf>1 and —1=x<0 s0, —<-1,secf=—I
X X

As sec #altains all real values except those between =1 and 1
Range of secant function=R - {x| =1 =x=<1}

11.1.3 Domains and Ranges of Cosecant Function
From the Figure 11.1

|
csc = —, v
1I
= terminal side &P should not coincide with OX or O {the XY—axis)
= f=0xtrt2r..
= &= px wherene Z

Domain of cosecant function = R — {x|x=nn, nes £}
As csc ¢ attains all values except those between —1 and 1
Range of cosecant function =R - {x|-1<x<1}

The following table summarizes the domains and ranges of the trigonometric functions:

Function Domain Range
y=s5nx (—o, m)=R [—1, 1]
V= Cos X {—x, m)=R s
Y=lanx T —n, =R
: R={—M.~£}.x#[2ﬂ+!‘li.rrez ( )
y=cotx R=(-w,x),x2nn.ne Z (=, m)=R
k] e y i
4 o (oo, m),x2(2n H%:r::—}f {emi=i] A e
1= COsCC X (—o, ), xznm,ne Z {(—m, —1] w1, =)

11.2 Even and Odd Functions
A function [ is said to be even if f{—x2  f(x), for every

number x in the domain of £ The graph of even function
7 is always symmetric aboul
For example: (3 =x"1s even function of x. Here P-isis

F=0=(xPEx =f(5)
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A function [ is said to be odd if f{—x) = — F{x}, for every number x in the domain of [,

For example: /{3 = x" is an odd function of x.

. B T El l s .
Here f-x)=( _'tj ==x ==J{x) The graph of odd function s
The lunction fi#)fcos for all #= R is an even  always svmmetric about the

function {sce figure ®.2). OFigin.
Here f{—f)=cos(—=cosfl= (f). 1. 1)

—T .
Thus, f{f)&cos isan even function, ., [x, 1) = (cos B, sin 0)
Similarly, the function f{&) = sin & for all (1.0 i I_; (1.0
e R is an odd function. \ i ' 2
Hem TUR) =gy =-amise= (g) \ (s, ) = (cos B, ~sin )
Thus, F(814H8sin  is an odd function, 0, -1}

L["=8 In both the cases. for each x in the
domain of f, = must also be in the domain of £

11.3 Period of Trigonometric Functions

All the six trigonometric functions repeat their values for each increase or decrease of
2m in  therefore, the values of trigonometric functions for & and & + 2ax, where
7= R and n € £, are the same, This behaviour of trigonometric functions is called
periodicity.

Period of a trigonometric function is the smallest +ve number which, when added o
the original circular measure of the angle, gives the same value of the function. A
function is periodic, if /(0 + p) = (¢}, for all @ in domain of function and the least
positive value ol g is called the period ol the [unction.

Now, let us discover the periods ol the irigonometric [unctions.

Theorem 11.1: Sine is a periodic function and its period is 2.

Proof: Suppose p is the period of sine function such that
sin{fd+ p)=sin dforall He R (A)
Now put /= I, we have
sin {0+ p)=sin0
= sinp=10
=% p=0,+m 4+2m +37,...
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(i) If p=m, then from (A)
sin{f+a1 = sind (not true) vosin(a+ M =—sin
Thus = is not the period of sin #
{if)  If p= 27, then from (A)
sin {0+ 2m —  sindd which is true 0 sin(@ + 2a)—sin
Az 2mis the smallest positive real number for which
sin{f+2n) = sind
2m is the period of sin @,
Theorem 11.2: Tangent is a periodic function and its period is .

Proof: Suppose p is the period of tangent [unction such that

tan{?+ py=tan @  lorall de R (B}
Now put @ 0, we have [ Note:
tan (0 —pi=tan = tanp=10 By adopting the procedure used
p=0,m, 2x, 3, .... in finding the periods of sine

and tangent, we can prove that
(i} 27 is the period of cos &
(it) 2 is the period of csc &
(iii) 2 is the period of sec &
tan (#+7) = tan & (iv) 1 s the period of ot 0.
Therefore, « 18 the period of tan &

i1} If p =, then from (B) tan(# + ) = tan &,
which is true
As r is the smallest positive number for which

Example 1: Find the periods of: (1) sin 2x () 3+ tan%

Solution: (i) We know that the period of sine is 2n
sin (2x -+ 2m) = sin 2x = sin 2(x + m) = sin 2x
It means that the value of sin 2x repeats when x is increased by .
Hence 15 the period of sin 2x.
s . y ; X ; X

(1))  To find the period of 3 + lang, consider only tan E :
We know that the period of tangent 15 7

X

I 1 . X
tan [ =Hz=_ tan-— = tan —(x+37) tan—
5 ] O 3 3

X +
It means that the value of tan — repeats when x is increased by 3r.
A

] XL e
Henge the period of 3 + tan 3 is 3. The addition of constant number 3 to the
tangent function does not atfect the period.
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[.  Determmune whether the [ollowing lunctions are even, odd or netther odd nor even
(i) sin’x (i) snx+cosx (iii} sin*x+cos' x
. 1 . sinx+sindx
{1v) tanx+secx () —— (VI
COSCET X COS X+ 083X
" 1
(vit) ——— (viit) —————
SEC X+ 5eC X secx+qot” x
2. Find the periods of the following functions:

(i) sin 5x cos Tx {iii} tan 3x {iv) cot >

(&) 5 (250 1. 3z =
(v) I‘}mn| —.'rJ {v1) cnsa'?t— (vil) —sin| ———

20 5, A
{ T
(viii) =5-3sec| Tox+— {ix) ]2+1l-‘.lllan —
\ 4 0
¢ i
T¢. &) 2
{x) ﬁ—4cm| ———p —J (xi) 9+ 'i{]w.:| o ]
.4 4 = JEE =

11.4 Values of Trigonometric Functions
We know the values of trigonometric functions for angles of measure 07, 309, 45°, 60°,
and 907, We have also established the following identities:

sin (=) = —sin &

cos{—) =cos @ tan (=3 ) == tan @

sinfr— @) =sm @

cosim— &) =——cos #

tan (x — &) =—tan ¢

sin{x+ &) =-sin &

cos(m +8) =—cos #

tan (x + & )= tan &

si{2ax—8) =—sin &

cos{2n — &) =cos @

tan {2 — @) =—tan @

By using the above identities, we can casily find the values of irigonometric [unctions
ol the angles of the [ollowing measures:

—30°, — 45%, — &P, — 90° + 120°, £ 135°, £ 150°, £ 18P

+ 210°, £ 225°, + 240°F, + 2P + 300°, £ 315°, £ 330°, £ 360°
11.4.1 Graphs of Trigonometric Functions
To plot the graph we shall follow these steps:
(i) Table of ordered pairs (x, y) is constructed, when x is the measure of the angle

and v is the value ol the trigonometric function for the angle of measure x;

{11} The measures of the angles are taken along the X-axis;

{111) The values of the rigonometric functions are taken along the Yaxis;
T ——
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{iv} The points cormesponding to the ordered pairs are plotted on the graph paper,
(v} These points are joined with the help of smooth curves,
11.4.2 Graph of y = sin x from — 2n to 2x
We know that the period of sine function 1s 2w so, we will first draw the graph for the
interval from 07 to 3607 {from 0 to 27).
To graph the sine function, first, recall that =1 £sinx=1 forall xe R

We know the range of the sine function is [=1, 1], so the graph will be between
the horizontal lines y=+1 and p=-1

The table of the ordered pairs satisfving v = sin x is as [ollows:

{ iH i by —- —_— —_— e _— W o
= | 3 6 A e R B
or ar ar ar ar ar ar ar or ar ar ar ar

0F 30 | a0F | S0F | 120° | 150F | 180F [ 2107 | 240F | 270F | 300 | 330F | 3alF

x| ax x| 4% | & i | s
3

Simx| 0 0.5 | 0.87 I | 0BT | 05 o | 05087 -1 [-087]-05( 0

To draw the graph:

(i} Take a convenient scale { : ;:{jz {;.; ?:Equi?;l;r;?ﬂ:;]f:: |};I: I_11|1|::|’: t

(1) Draw the coordinate axes.

(i) Plot the points corresponding to the ordered pairs in the table above
Le., (0, 00, (307, 0.5), (607, 0.87) and so0 on.

{1v) Join the pomts with the help of a smooth curve as shown. So, we get the graph of
v =sinx from 0 to 3607 i.e., from 0 to 2.

m As we see that the graphs of trigonometric functions are smooth curves and none of them 1s
line segment or has sharp corners or breaks within their domain. This behaviour of the curve is called
continuily, [t means that the trigonometric functions are continuous, wherever they are defined.
Muoreover, as the tmgonometnic functions are periodic so their curees repeat after fixed miervals.

=]
TErTa. T T T T T T T T T - X
E e &0 00 200 130T 180N 2105 2440 X705 30 3300 As0”
5
S e e sy o i e e B S b =1y==1

Graph of p =sinx from (F to 360*
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In the similar way, we can draw the graph for the interval from 0F to =3607, This will
complete the graph of ¥ = sin x from —360" 1o 360° (from —2x 1o 2x), which is given
below:

- --- - M m e mm e mmme— e Y=

L
o R i | ] | et el |

1
ISP LI " ™ 30"

¥
L |l e ol

¥ T ¥
216 241" 2707 30" 350

Graph of = sin x from — 360° to 360°

The graph in the interval [0, 2] 1s called a eyele. Since the period of sine funciion is
21, so the sine graph can be exiended on both sides of x-axis through every inlerval
ot 2m.
Properties of graph of sine function { p = sin x)
(i  The domain is the set of real numbers {—e < x < o),
{(11) The range includes all real numbers from —1 to 1, inclusive, [-1, 1].
(111) The graph of sine function is continuous for all real numbers.
(v} The perind of sine function 1s 21, Mathematically, we can express it as
sin{f+ 2z ) =sind.
(v}  The sine function 15 an odd function, As the graph of sine function is symmetric
about the origin. Mathematically, it can be written as Hin{—l'?]l =—giné .

: - 2 ! i Fra
{vi) The maximum value of y=sinxis | when I=E+25‘?H, where ne 2.

. . L I .
{vil) The minimum value of ¥ =smnxis—| when x= £ +2xn, where ne Z,

{w111) The x-intercept of the sine function ocewrs at x—=an, where e £,

{(ix) The y-intercept of the sine function is 0.

{x) The amplitude of sine function is 1.

(xi} Inunit circle siné is equal to the y-coordinate of the given point.

11.4.3 Graph of y = cos x from - 27 to 27

We know that the period of cosine function is 2m so, we will first draw the graph for
the interval from 07 to 3607 {(from 0 to 2a),

We know the range of the cosine function is [-1, 1], so the graph will be between the
horizontal lines vy = +1 and y =-1
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The table of the ordered pairs satisfving y = cos x is as follows:

0 Fd T T T | &m = o | d4x | 37 | Sx | llx | ag
. 5|3 |lz]| 5|6 s | 3|z |3 |6
i T 0T or or ar or or or T ar or ar
| s | oaoe | 900 | 1200 | 1502 | 1goe | 2000 | 2400 | 2700 | 3000 | 330° | 360e
COs X 1 87 | 0.5 L =05 =087 =1 |=kET] 05 1l 0.5 | (L&Y 1

The graph of y = cos x from 0° to 360° is given below:

- ) L] L 1 )
£130 ape 120 1507 1HDF 2107 2407

e 000 30 160
Graph of p = cos x from 07 to 360°
In the similar way, we can draw the graph for the interval from 0F to =3607, This will

complete the graph of ¢ = cos x from =360° to 3607 i.e, from =27 to 2w, which is given
below;

‘\‘\ """"""""""""
' 5

e ey =S e s e e e e

Graph of y = ¢os x from — 360° 1o J60®

As in the case of sine graph, the cosine graph 15 also extended on hoth sides of x-axis

through an interval of 2x.

Properties of graph of cosine function { y =cos x )

(i) The domain is the set of real numbers {—o < x < =),

{11}  The range includes all real numbers from —1 to 1, inclusive, [-1. 1].

{111)  The graph of cosine funection s continuous for all real numbers.

{iv)  The period ol cosine [unction 1s 2x. Mathematically, we can express it as
cos{# + 27 ) =cosd,
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(v} The cosine function is an even function, as the graph of cosine function is

symmetric about the w-axis, Mathematically, it can be written as l;::m{—ﬁ'} = CosH

{vi) The maximum value of y=cosx is | when x = n, where i is an even integer,

{vi1) The minimum value of y=cosx 15 | when x=an, where #1% an odd miteger.
(viii) The x-intercept of the cosine function occurs at x=—+an, where ne Z.

(ix} The y-intercept of the cosine function is 1.
{x) The amplitude of cosine function is 1.
{(xi) In unit cirele cos@ is equal to the x-coordinate of the given point.

11.4.4 Graph of y=tan x from —7to 7

We know that tan (—x) = — tan x and tan {m — x) = — tan x, so the values of

tan x for x = 07, 307, 6(F, 907 can help us in making the table,

Also, we know that tan x is undefined at x =+ 907, when
: T e : : =
(i) xapproaches = trom left x — s J . tan x increases indefinitely in Quard 1.
£ L1
I,-' "\.II
' | . tan x increases indefindtely in Quard IV,
A

(1i) xapproaches % fromrightie., x—
L

ra | =

v .

r . ; T . ey ;

{1m) x approuches —é from leht 1e., .r—}l —;] . bm xomereases mdeblmitely m
b

i

Ouard 11.

4 =

. T . - ; b g y ; .

(iv) x approaches — E from right ie, x —» —EW , tan x increases indefimitely in
\ )

Cuard 111
We know that the period of tangent 1s 7, so we shall first draw the graph for the interval
from 0 to 7 (from 07 to 1807).

The table of ordered pairs satisfying v = tan x is given below:

r x T x iz Sx
v || = (b= (|t = | =
& 3 1 3 3 fi
X
o () ¢ (18 qr ur (i o ni
u 3 o [ SR O | BOEHD 12O 150 184
tan { .58 173 +i — | =173 {1.5% {0
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Since the period of tan x is w, s0 we have the following graph of ¥ = tan x from —360°
to 360°,

. 2 1 . 2

] E [ =hie :: i [ f
- 1 A L o
i Y | ¥
| o | : :

| Hf i X
i i I W

L 2

Graph of y = tan x from = 360° to 360°
Properties of graph of tangent function { ¢ = tan x)

(i) The domain is the set of real numbers except the values where function is
undefined domain of tan x = (-2, x), x={2n+1 }% ,wherene £
(11) The range includes all real numbers (-0, o)

3 i : i
{111) The graph of tany is not continuous for all real numbers. It breaks at x= (2n+1)—

2

Jwherene £

{1v) The penod of tan function 1s . Mathematically, we can exproess it as
tan{@ + 7)=tan@

{v}) The tan function is an odd function, as the graph of tan function is symmetric
about the origin. Mathematically, it can be written as tan{—#) = — tan

{vi) The r-intercept of the tangent function oceurs at x=mn. where ne 2.

{(vii) The v-intercept of the tangent function is 0

{viit) The amplitude of tangent funciion is undefined because 1t has no maximum or
minimum values.
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I.  Draw the graph of each of the following function for the intervals mentioned

against each:

(1) y=-—sin2x , X2 [2m, 2] {1} w=2cos 2x, xe [}, 2n]
(i) y=tan 2x , xe [-nm, 7| {iv) y=u1n% . xe [=2x, 2x]
(v) y=sin %.1‘ » xe [0, 2n] (vi) v=cos %.r . xe [-m n)

2. Omthe same axes and to the same scale, draw the graphs of the following functions

for their complete period

(1) y=sinyand y=smn2x (1) y=cosxandy=cos 2y

3. Solve graphically:

(1) sinxr=cosx, xe [0 n] (i) sinx=x, xe [0, ]

11.5 Maximum and Minimum Values of Given Functions of

the Twvpe
s g+ bsind . a+hbcosf
o a+bhsinfcf+d) « atbeosicl+d)

*  The reciprocal of the above, where a. &, c and o are real numbers.
The trigonometric functions like sine and cosine are periodic function because the
values of these function repeat over regular intervals. These functions are fundamental
in mathematics because of the repetition of their values at definite eycles and are used
to model various real-life situations, such as radio waves, light wave, and alternating
current in electricity and are also known as a specific case of sinusoidal functions.
The functions of the form f{ #)=a + b sin &, g(fy=a + b cos &, f|(B) =a + b sin(cd + d)
and g (f)=a+ bma[ﬂ 1+ ¢ ) are the most common types of sinusoidal functions,

Now consider the general form of sinusoidal function f(#)=a+bsin{ef/+d)...(i)

here “a’ represent the vertieal shift refers to the vertical translation of the graph ol a
periodic function, achieved by shifting the entre graph upward or downward. This
shifi, also known as the vertical displacement, moves the function’s position along the
p-axis without altering its shape or period. Amplitude 5 is the maximuom height of a
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G % A 2 ;
wave measured from its midline. The period of (i) is equal to =% Phase shift ‘d’
"

indicates the horizontal translation of the graph of a periodic function, determining how
far the wawve 15 shitted left or right along the x-axis. A positive o shifts the graph to the
left, while a negative 4 shifts it to the right, altering the starting point of the wave
without changing its shape or perniod. F(81 =1+ 3 sin (26}

For Example consider the function = A
f@)=1+3sin(P ). Here a = lis

vertical shift, amplitude =[b| = [3/=3  Ampliude

Period

: 2T :
and period— =" =7 as shown in the  Verical
_ 2 ghift ™
adjacent figure. e

Now, finding the maximum and
mimimum  values of the [unclions

F(@)=a+bsin(& +d) and
2 = a+hcos{-ﬂ +-:i} is not a difficult task. We know that the maximum absolute

values of sine and cosine are equal to 1, so the maximum value of the product hsin#
is [B].

Thus the maximum value of fi{f)is : M=o+ b| . Whenever siné =1 or cosf = |
where M denotes the maximum value of the function.

The mimimum value of a functon 15 m= f:—|.";|| . whenever sin? = -1 or cosd? =1
and m denotes the minimum value of the function.

The absolute value of b is called the Amplitade of f(8) = a+bsitf _ The value of the

amplitude can also be determined using the formula
Blaxiromem value — Mindmuam value

Amplimde = 2

Example 2: Find the maximum and minimum values of the following functions:
(i} 2+3sinx (i) S5=2cosdx  (ii) reciprocal of (ii)
Solution: (i) Let f(x)=2+3sinx
The maximum value of fix) will oceur when sinx=1 . Herea= 2 and b = 3,
Maximum value of the function: WM =a+|h =2+ 3 =5
The manimum value ol the function will gceur whensinx = —1 |
Minimum value of the function; m=a—-|h=2-3=-I

Thus. maximum value of the function is 3 and the minimum value is -1
R ——
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(ii) Let f(x)=5-2cos3x

The masimum value of fx) will oceur when cos3xy =1 Here o=5Fand bh=-2 |

Maximum value of the fanction: M - a1 Jh - 511 2] 5127,
The minimum value of the function will occurs when cos 3x 1.
Minimum value of the function: m=a =5 ] 2|=5 2=13.
Thus, maximum value of the function is 7 and the minimum value iz 3.
[} reciprocal of part (ii)
1

The reciprocal of 5—2cos3x is -
=2cos3x

Lt pixy= —2eos3x

To find the maximum and minimum valves of gix), first we will find the maximum and

minimum values of 3—2¢0s3x, which are 7 and 3 respectively.
After fimding the maximum and minimuom values take their reciprocal. The reciprocal of the

maximum value is the minimum of g{x) and the reciprocal of the

minimum value is the maximum of g(x),

1 1
Maximum value of g{r)=—= e =033
moo:

1 ]
Mini rul f =—===0.14
inimum valuc of g{x) v 7

11.5.1 Applications

Ferris Wheel Problems

The first Ferris wheel was invented by George W, Ferris. He

built the: first one for 1893 World's Fair, A Ferris wheel is an

important example of periodic motion hat can be described

using  trigonometric  functions,  specifically  sinusoidal

functions. When we model the height of a rider on a Ferris
Ey

wheel over me, we can use these functions o caplure the it

periodic nature of the motion, The motion of Ferris wheel can m.ﬂ*ﬂ ,ﬁ"‘ﬂ
be modeled by fi7) = e + bsinfcr +d) or f{7) =g~ beos{er + d)

Example 3: A Ferris wheel with a radius of 45 feet has its lowest point located 5 feet above
the ground. It completes one full revolution every 6l seconds in counter clock wise direction.
Model an equation that deseribes the height of 8 nder on the Fermis whee] as a function of
time ¢, How high is the rider from the ground afler 40 seconds?, Alse graph the moedel equation,
Solution: Since it takes 60 seconds for the Ferris wheel to complete one full revolution
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{one cyele), which is the period of the Ferris wheel, that is period = 60

2—'?:(}{} — 4:7:E = e=

e Gl 30

The amplitude & which is equal to the radius of a ferris wheel (in this case b — 43).
The vertical shift a is the height ol the center ol the Ferris wheel above the ground.
Since the lowest point is 5 feet above the ground, so a =5+ h=5+ 45 = 50.
we can model the height of a nder nsmg (sme or cosine), because it retlects the penodic
nature of the motion. We usually choose a cosine function if the rider starts at the
maximum height, or a sine function if the rider starts at the midpoint.
Since the rider starts at the lowest point and goes up, we can easily model the required
equation as a negative cosine function so.
hii)y=—bcos{ct)+a , where ¢ is time and Jr is height.

Y
T s - T 5
Now substiluting the above values we get the lunction i) = —45cos [ﬁr |+:!l] :
4

which s the required equation of Ferris wheel.
Next, we find the height of the rider at + = 40 seconds.

T
hir)=—45¢cos| —r [+ 350
} [30 }
For i = 40, we have
&
M(40) = —45¢cos| " 40 |+ 50~ T2.5 feet
L 30

Thus. height of rider after 40 second is 72.5 feet.
The graph of the maode] equation is shown below,

Height of a rider afier 40 seconds *y i
106 - - =45 e [ﬁﬂ +.50

a0

. | RO
AL :
[ 60 |
R R e T e SR r ............
40
30
20

Y2540

5 10 15 20 25 30 35 40 45 S0 55 60
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Example 4: The water level L in feet of a tidal river varies throughout the day, Suppose

-

_I .\l
the level of the tidal river can be modeled by the equation: L(r) = 8~ 4sin| %f }, where
L

f denotes the time in hours, The water level oscillates 4 feet above and below an average
level of 8 feel.
{1} Find the water level al t = 3 hours?
(b1 What 1s the munimum walter level?
£ X
: : : : o
Solution: {a) Given equation of water level: L(t)=8+4zin ?r
LR
To tind the water level, substitute £ = 3 into the equation

g P Y
[(3)= H+45En[£3]— 8+ dsin l""— |
6 2

L{N=8+4(1)=12
Thus, water level at t=3 hours is 12 feet.
(by MNow, to find the minimum water level. we need to determine when the sine
function attains 1ts minmimum value., We know that the minimum wvalue of

T
—¢

sin f 1, substirute the sin[ J— —linto the equation

6
Liz) =H+4mn[%rJ= B+4{—1)=8-4=4

Thus, minimum water level of the tidal river is 4 feet.
Example 5: From a point 100 m above the surface of a lake, the angle of elevation of

a peak of a cliff is found to be 157 and the angle of depression of the image of the peak
is 307, Find the height of the peak.

Solution: Let 4 be the top of the peak AM and

MB he its image, Let P he the point of
observation and I be the point just below F {on

= 10ILk a1 =

the surface of the lake).

From P, draw PO L AM

Let mPQ = v metres and o AM = h metres.
mAQ = h=mOM =h=mPL = k- 100 A

From the figure,

AQ h=100 BO  100+h
ciat d tan 30° = % -
P{___.:' ¥ an dn P{:} ¥

tan 5% =




—_— nomietric Funetions and
Ui QR <> s GO

By division, we get
tanl15  A-100
tan30° A +100
By Componendo and Dividendo, we have
tan 153 +tan 30° A-—100=h+100  2h hi
tan 15% —tan 30° ~ h—100—A—100 " —200 ~ —100
_ lan 307+ tan 15° 0.5774+ 0.2679 100
tan 30° —tan 15° 0.5774-0.2679 |

= h= 2731179
Hence height of the peak = 273 m. (approximately)

P EXERCISE 11.3 4

. Find the maximum and minimum values of the following functions:

o]

(1) 3=sinix () 3+sinlx (i) —+sinfdx+x)
2
. 3 T ; o T
{iv) =+cos| x—— vl 1-3coslx (vi) 1+251n| x4+—
2 4 . 6
. 1 1 , 1
vil) - Vill) ix
(vii) 10— 25in3x ( }T+3uu:-:|i—lr] (=) 5—3cos(3x-1)
2. The temperature T in a certain city varies throughout the day according to the
equation T(t)= L;"..\i,,{ {'__. T; |! 15, where ¢ is the time in hours, with r = ()

corresponding to midmght
() Find the maximum and minimum temperature during the day
(b) Find the temperature at ¢ = 9 hours (9:00 a.m.).

3. A manon the top ofa 100 m high light-house is in line with two ships on the same
side ol i, whose angles of depression [rom the man are 17" and 19 respectively.
Find the distance between the ships.

4. P and @ are two points in hine with a tree. I the distance between P and O be
30 m and the angles of elevation of the top of the tree at F and {2 be 127 and 157
respectively, find the height of the tree.

5. A giant Ferris wheel has a diameter of 60) feet. The lowest point of the wheel is located
fi feet above the ground, The wheel completes one full revolution every 80 seconds,
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{a) Model an equation that represent the height At} of a rider on the Ferris wheel
at any given time /.

{b) Find the maximum height of a rider,

{¢)  Find the height of the rider from the ground aller 35 seconds.

A child is plaving on a swing in g playvground, The height 500 of the swing seat above the

ground (in meters) at time r (in sceconds) s modeled by the function:

By = 1.5+ 1.2 sin(3m6)

{a)  What is the maximum height reached by the swing seat?

(Y What is the minimum height reached by the swing seat?

(¢} How long does it take for the swing 1o complete one full back-and-torth motion
(period)?

(d) At what time(s) does the swing seat first reach a height of 2.12 meters?

A camival nde consists of a vertical wheel with a diameter of 40 feet. The centre

of the wheel is 28 feet above the ground, The wheel rotates at a constant spead and

takes 120 seconds to make one complete revolution. Model an equation that

describes the height h(t) of a rider on the wheel as a function of time t. How high

is the rider from the ground after 90 seconds? At what tmes will the rider be

36 feet above the ground?

Suppose the emperature T in degrees Fohrenheit of Lahore city in a month  of

December  throughout  the day can be modeled by the equation:

F=064+8 hini —t |, where ¢ 15 the time in hours, The temperature oscillates
-

8 degrees above and below an average temperature of 64 degrees.

(a) Find the temperature at =9 hours?

(b) At what ume the temperature will be maximum?

(c) Calculate the maximum temperature.

Suppose the population ol a coustal city follows a sinusondal pattern duoe 1w

seasonal migration. The population ot the city over the course of a year can be

e T

A
i i
o=
,

\ B e

modeled by the equation: FP{¢)= TOHO0+ 10000 cos Pir) is the

population at time ¢ (¢ s the tme in months, with ¢ = @ comesponding to
January 1™). where ¢ denoted the months in a year.

{a) Find the population of a city at f = 7 months
(b)  Find the maximum population



Limit and Continuity \

INTRODUCTION

In mathematics, the concepts of limits and continuity are foundational in understanding
the behavior of functions and sequences, especially when applied to real-world
scenarios, This chapter will introduce and explore how to demonstrate and find the
limit of a sequence and a function, understand continuous and discontinuous functions,
and apply these concepts in varions contexts such as economics, finance, and natural
sCiEnces.

This unit will provide you with the tools to understand and apply the fundamental
concepts of limits and continuiry, both theoretically and practically. By the end, you
will be able to demonstrate the limit of a function, test for continuity and discontinuity,
and apply these ideas to a wide range of real-world problems across various fields,
including finance, economics, and science,

12.1 Limit of a Function

The concept ol limit o' a [unciion 15 the busis on which the structure ol caleulus rests.
Before the definition of the limit of a function, it 15 necessary to have a clear
understanding of the following phrases.

12.1.1 Meaning of the Phrase “x approaches zero™

1 .
Suppose a sequence x, = — assumes a sequence of values as:
=

1

LR

bfll._.
(]
AL

P | =

We can see that x is becoming smaller and smaller as » increases and can be made as small

as we please by taking “n” sufficiently larper. We can see that the sequence ¥, = — is

n
becoming smaller and smaller as n increases and can be made as small as we please by
2 S, 1 ;
taking “n" sufficiently large. In other words, » = — becoming closer and closer to 0
n
as n becoming large. This unending decrease of x, is denoted by x, — 0 and read as “x,

approaches 2ero” or “x. lends (o zero as » — 0. That 15, the limit of the sequence x, is 0.
=
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12.1.2 Meaning of the Phrase *“x approaches infinity™

Suppose a sequence v~ 107 assumes values as 1, 10, 107, 10°, .., 107, ...

It 1s clear that the sequence x, is becoming larger and larger as » increases and can be
made as large as we please by taking # sufticiently large. This unending increase of the
seqguence xy 15 symbolically written as “x, —7 and 15 read as “x; approaches mfimty™
or *x, tends to infinity” as n >«

12.1.3 Meaning of the Phrase “x approaches a™

Symbolically it is written as "x—a" which .

means that x is sufficiently close to @ but diflerent iﬁ:;;::;;;?tlib;rlg quite different
from the number o, [rom both the left and right g0 020,

sides of o that 15 x—a becomes smaller and  © — 0 means that .« is very close to
smaller as we please but x—a=0. zero bur not acally zer.

12.1.4 Concept of Limit of a Function B R Ak B A P

(i) By Finding the Area of Circumscribing Regular Polygon

Consider a circle ofunit radius which circumscribes a square (4-sided regular polygon)
as shown in Figure 1.

The side of square is «JE and its arca is 2 square unit, It is clear that the arca of
inscribed 4-sided polyzon is less than the area of the circum-circle

r=3142(xr =gl =7 =3.142)

i
1 1 {
53
Figure 1: 4-sided polygon Figure 2: H-sided polygon Figure 3:16-sided polygon

Bisecting the arcs between the vertices of the square, we get an inscribed 8-sided
regular polyvzon as shown mm Figure 2. Tts area 1s E-..I"_= 2828 square unit which 1s
closer to the area of circum-circle. A further similar bisection of the arcs gives an
inscribed |6-sided regular polygon as shown in Figure 3 with area 3,061 square unit
which is more closer to the area of circum-circle.

Tt follows that as *“n™, the number of sides of the inscribed polygon increases, the area
of polygon increases and becoming neared to 3,142 which is the area of circle of unit
radins.
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We express this situation by saying that the limiting value of the area of the inscribed
polyveon is the area of the circle as n approaches infinity, i.e.,
Area of inscribed polygon — Area of circle as n — o«

Thus, area of circle of unit radius = = 3.142 (approx.)
(iif} MNumerical Approach

Consider the function f(x) =«

The domain of /(x) is the set of all real numbers.

Let us find the limit of /{x) = x" as x approaches 2.

The table of values of f{x) for different values of x as x approaches 2 from left and right

is as follows:
From lelt of 2 > - from right of 2

1 1] I35 1.5 1.9 | 1.99 | 1.999 | [.9999 ] 20001 | 2.001 | .01 ol | 4 i e
ek =) 13375 [ 5,832 | 6.859 [7.8806| 7 8806 70088 0012 (8.012 £ 12046 | 9.26] | L0648 | 1562527

The table shows that, as x gets closer and closer to 2 (sufficiently close to 2), from both

sides, f1x) gets closer and closer to 8.

We say that & is the limit of f{x) when x approaches 2 and is written as:
flixy—=8asx—2 or limx¥'=8

x—h2

12.1.5 Limit of a Function

Let a function f{x) be defined in an open interval near the number “o™ (need not be at

a). If, as x approaches “a” from both left and right side of “«” f{x) approaches a specific

number “L" then “L", is called the limit of f{x) as x approaches a. Symbolically it is

written as:

lim fix)=L read as “limit of f{x} as x — @, i5 L”

It is neither desirable nor practicable to find the limit of a function by numerical

approach, We must be able to evaluate a limit in some mechanical way, The theorems

on limits will serve this purpose. Their proofs will be discussed in higher classes.

12.1.6 Theorems on Limits of Functions

Let fand g be two functions for which Lim f{x)= L and Lim g{x}= 3, then

Theorem 1: (a) The limit of the sum of two functions is equal to the sum of their
limits.

I_,i11]|_f'{,1']+ a(x}]= !:,1m Fixy+ I:.i m e(x)=L+ M

For example, Lim(x+35)=Limx +Lim 5=1+5=6

Lol X
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(b)

(c)

(d)

(e)

(f)

The limit of the difference of two functions is equal to the difference of their
limits.

Lim[f(x)—gix)]= Lim f{x) - Limg(x)=L- M

For example, Lim{x—35)=Limx—-Lim5=3-5=-2
i — 3 =1

a—+13
If & is any real number, then
Lim[&f{x)] =k Lim f{x)= &L
T =T Ao

For example, Lim(3x)=3Lim {x)=3(2)=6

The limit of the product of the functions is cqual to the produet of their limits.
T.in_1|j'[,r] gix)] = T.in_1 FAEYE !_,im a(x)=LM

For example, 1 .i1'|;| (2x)lx+4)= I_:':n_'t (2x) ]_i11;| (x+4)=(2}5 =10

The limit of the quotient of the functions is equal to the quotient of their limits
provided the limit of denominator is non-zero.

, Lim f(x)
|:j{xﬂ— 2 . provided g(x)# 0 in a neighborthood of

Lim | = =
g{x)| Lim g(x) M

E—F i

gand M =10

FHH_ L f4 Sa0d B0

For example: Lim |\ == = =—=12
x+3' Limg{x+3) 2+3 5

L —2

Limit of [ /{x}]", where n is an integer

Lim{ /(x)]" =[Lim /(x)] = L

3
For example, Jrinql{Ex—Jj-’ _(Lm} [2,-:—3}] =(5'=125

(g)

(1) limx"=a", wherep>0and pe &

{2} lim o=

We conclude from the theorems on limits that limits are evaluated by merely
substituting the number that x approaches into the function.
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12.2 Limits of Important Functions

Y
If by substituting the number that x approaches into the funetion, we pet [% J, then we
evaluate the imits as follows:
We simplify the given function by using algebraic technigque of making factors if
possible and cancel the common factors, The method explained in the following
important limits,

n

. X'—a > ; e
12.2.1 Lim =na™' where » is a non-zero integer and a = 0
=
¥4 g=g

Case 1:  Suppose n is a positive integer,
o G 01, :
By substituting x = a, we get [E ]ﬁm‘n, s0owe make factors as tollows:

-] n-1

X=a"=(x=alx +ar @'+ L+ d™)

n=1

n ] n-1 n—= 2 n-|
. X =g . (x=a)x" +tax" +ax""+ ...+ a
Lim = Ln'.n{ U )
J - X— Ak X —o
= Lim(x™ +ax™ 4+’ o+ a™ )
e 1 |
L n-2 2 "= 1. n—d =l
= +d a +da” i + i + ... .4a
=I:I.'r 1 +u.\. I +':r.u E +|:Ill I"‘ + l:]ﬁ | :ﬂﬂ" 1

: ; ety ; is a positive integer.
Case 1l:  Suppose n is a negative integer (Say n = —m) where m P g

1 | gt —x"
Nuw‘ _'t' — ﬂ — I _ﬂ = :I‘ﬂl alll = xmﬂ.m
: x—a xr—a X—a r—a
n n 3 m
e LT . 1 \" 2T -
Lim =Lim| ——
i X—d sva | x" g /Ix Xi=ot' |
= ——(ma"") (by Case—1)
a’ o
==p1a "
co b - ..
T.im = " CoH=—H
—ul xena@
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- J-,\l '; —H == xl'ﬂ ] i = =
12.2.2 Lim- =—— where n is an integer and ¢ = (.
x 10 _-‘_- z_ql'l"-

s 0 . Zi
By substituling x = 0, we have [E ] lorm, so rattonalizing the numerator.

L].m-u.l'x*u—u'g Lim -u'x+r:—m'r_‘-\‘n'x+u+m"'_
K=kl X |il| \llr.r+f:+“qi';
le[ Fra—a ] le[ 1
oo 'q't+u+-».,'"_ B \|'1'+£.r+~.l|'_
I |
= Lim =
""-'ul"r+u1-«,|'r_ a+yu a
Example 1:  Evaluate: (i) Lim= - (i) I.im—l_'?'
P :".T."—J' N=43 .T—\ﬁ
i, & b
Solution: i) Lilﬂx, : LE |t"+:+rm.
e e
Lim> DoAY P s
1’-":1."—1 '-*' M Pl
Ilmi]—.ﬂ.—g—i
1 s | x I ]

(i) L:me ir Lim{£+£i%;jﬁ}=umlﬁ+ﬁ} =i E=25
X =k s g | { 3':| X¥=r5

12.2.3 Limit at Infinity

We have studied the limits of the functions f(x), flx) g(x) and "f.:‘lf;l' .when x — efa
glx

number)

Let us see what happens to the hmit of the function fix) if ¢ 15 + @ or = (limits at
infinity) i.e., when x — +ooand — - =,

(a) Limitasy — +

[
Let fix)= —, whenx#0
X

This function has the property that the value of f{x) can be made as close as we please
o zero when the number x 18 sufliciently large.

We express this phenomenon by writing Lim L =10

J.—'n.n.x
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(b} Limit as x — ==

This type of limits are handled in the same way as limits as x — +az,

1e., Lim l =0, wherex # 00

K —d X
The following theorem is useful for evaluating limit at infinity.
Theorem: Let p be a positive rational number. If «° is defined, then

]

r a . a o
Lim — =0 and Lim — =0, where « is any real number.

[ — I-r' e _::l"

. 6 & =y
For example,  Lim —: =0and Lim = =0
f L

12.2.4 Limit of a Sequence

A sequence is a list of numbers arranged 1n a specific order, typically indexed by
natura]l numbers 1,2, 3,
Let {a,} be a sequence, where each term of the sequence is denoted by {ay} and n is a
positive integer representing the position in the sequence. The limit of a sequence {a,}
is the value that the terms of the sequence approach as n—oo,
We say that a sequence {a,} converges to a limit L if, for any arbitrarily small positive
number ¢ (epsilon), there exists a positive integer N such that for all » = N the
difference between g, and L is smaller than €. Mathematically. this is wrirten as:

.Linl a, = Lifve>0mINe Hsuchthat|a_— L ke forallp= N

If such an L exists, the sequence is said to converge to L. If no such £ exists, the
sequence is said to diverge.

}: Asn—w::.l—r[l

’ . 1
Example 2: Consider the sequence [f]'u“ =—
: H n

-

; ; ] LI ; 1
Solution: Forany € =0, we can choose N=—_ forn> N |a, —0=—¢, sothe
" [

. I
sequence converges to 0, Thus, im,,, —=0.
n

Zn+3

n+l

Example 3: Find the limit of the sequence a, =

Solution: We can simplify the sequence:

" E*E\l
_2n+3 n )

aq = =
1l I"‘\
in+1 n[l+ J

n
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3 1 . . 2+0
Asnp— o, =— {0 and —— 0, so we are left with: limg, =——=2
" n e 1+0

by i, . 2P,
i+

Divergent Sequences: A sequence is divergent if it does not approach a finite value.
Divergence can ocour in the following ways:

+  The sequence may increase or decrease without bound (e.g., 8, = n® diverges to infinity),
+ The sequence may oscillate between different values and not settle near any one

value {e.g., an = (—1)" oscillates between -1 and 1, 5o it does not converge).

12.2.5 Methods for Evaluating the Limits at Infinity

In this case we first divide each term of both the numerator and the denominator by the
highest power of x that appears in the denomuinator and then use the theorems on limit.

- A 2
Example 4:  Evaluate Lim i ibiy o
st =3 +10x°+ 50

Solution: Dividing numerator and denominator by x°, we get

Sx 11j+ I
f 2 cihatemts = [ -
Lim jxl --IE]J.'\-II = [.im S = Dl‘ﬂ:—:ﬂ:- 11'rn-:-;,_ 0
reee =3+ 10x7 = 50 “"*_3;&_,_@ =3+0+0 v gt
x ox
4x' = 51

Example 5:  Evaluate Lim —————
o= =3+ 2x"+1

Solution: Dividing numerator and denominator by x°, we get

4 5
: 4x" - 52 ; gy -0
Lim — 0 = Ljm —% % - =0
irw 32l Tm 2 1 3040
e
x X
Example 6  Evaluate: (1) Lim %A (1) TLim e

SR B B Lo oS3+ 4y

Soelution: {1) Here v'll_l=|.r| =—xasx=<0
Dividing up and down by —¢, we get

—E+3
2—3x _ Lim —X 043

I g - Xm0l 3. +
34+ 4x o

e

X

|'-.nJ
[ S

=
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(i) Here v =|x]=x asx>0

Dividimg up and down h}r x, we gel

.r_

o, ._‘I

Lim

—3
= Lim
"'“'-.I|3+4.x el II ﬂ+4
—+
1226 Lim|1+" | =e
m—dml Rl

By the binomial theorem, we have

'\-.l'\ vz i \I'; - 2 i
[1+1 | - l_ﬂ(]_}_n{ﬂ I}| 1 | +n(ﬂ' 1y Ej[I_J o
n, " "

20 R

i 1) | I 2
=a—1+—(1—— |1——)|——]

21 I I o
When n — + o, l,g

3 .
. =, ... all tends to zero, therefore
n "N

I 11 1
Lm|l-— | =1+1+—+—+—
T Hta Fi 21 3 4
=1+ 1+05+0166667+0.0416667+ .. =2T7I828] ...
As approximate valoe of e 15 2.718281.
Lim [1+—)| =e m We can also show that
T b n
I , 1
Deduction: Lim{l+x}* =¢ nEu-t}-:(1+ ”T s
i e 1Y .
We know that Lim| 1+ — | =e (1)
II—!WK F!
b |
Put p=— in (1) then 1;—
%
'[ 1
When x— L — o0 y, Lim |+— [m{]+r]
] H‘:I\. oy ]
L .
e=Lim{l+x}e »+ Lim|1+— | =e
a0 n— =+ .

Heneo Lim[] +x}-- =g

L
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12.2.7 [.ill“li_—-]- =log, a

X
Put  o'—1 =y {i)
then =1+
So, x =log (1+¥)
From (i) whenx — 0, v — 0
oa-1 : . I
LLrnﬂ = le;= Lim
L S 7= Ig}gl;':] + -'I__I} § — {1 ]

—log (1+ v)
¥

|
¥

=Lim o= =log] (. Lim(l+ y)" =e)
r—ll 1= ]{]H;; i y—i
log (14 v¥’
(=1
Deduction: L-'lmt J— log, e=1
Xl X
. a1 :
We know that Lim [ ]= log,_a (i)
| X
{' A
Put g = e in (i) we know Lii{lllk J= log: =1
L ] X
Important Result to Remember
; & ; p o)
(i) Lime¢' = (i) Lime" = Lim| — )|;=ﬂ
X o L =k i :l'l'.\.\{.‘.f

Example 7: Express each limit in terms of e.

I,-' 3 ] l

(i) Lim|1+= | (i) Lim{1+2n}n
"_””"x i 2} i Ik 3

il

.
Solution: (1)  Observe the resemblance of the limit with Lim I——J =g
M I\. i

i o o—+a
H.-"

-7 : ﬂ
:'!I\IZ.l 3 : I
(l+—| = []+—]| =|1+—
T L5 e | iLd
kS 3 4 J
T ) |':
; ; 1
L-ml[1+i | = Lim l[l +— ‘ = ¢ where, m=—
n—=m 1 H J 3
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{(ii} Observe the resemblance of the limit with

!
Lir{}{1+ 2n)n =g
I LF

. - ; e |
Lim([142n ) = Lmﬂ1[[l+2ﬂ)h| ,
i 4

a—xll [

put m=2n, whenn—0, m—1(

[ s
Lim{1+2n)s = lim| (1+m)" | =&
12.2.8 The Sandwich Theorem

Let /. g and A be functions such that f{x) = gix) = kix) for all numbers x in some open
interval contaiming “¢”, except possibly at ¢ itself.

If Lim f{x)={ and Limhix)= L. then Limg{x)=L

Many limit problems arise that cannot be directly evaluated by algebraic techniques.
They require geometric arguments, so we evaluate an important theorem.

sin @
=

12.2.9 1f ¢ is measured in radian, then ij.-iuﬂl 1.
r -

Proof: To evaluate this limit, we apply a new technique. Take # be positive acute
central angle of a circle with radius » = 1. As shown i the figure, (38 represents a
sector of a circle. Join 4 and B and extend OF to L) such that Q4 L 4D, Also draw
BC LN on 4.

Given |Qd|= @8] =1 (radii of unit circle)

| BC |

In the right AQCE, sin 8="— =| BC|
| OB

In the right AOAD, tan=221_| 4D
04 |

(1) Areaof ﬁﬂ.-—:[ﬂ-—; | || | = %{1}(&1’.{1 U}—%siu 0

(1) Area of sector (48 = %r? A= %[I}[ﬂ] = %H and

(iii) Area of AD4AD = él OA|| AD| = é{lj{mn fy= %hm &)

From the figure we see that
Area of ACQAB < Area of sector 048 < Area of AOAD

| I o 1
= —smﬂl::;—:—umﬂ
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As sin B s positive, so on division by = sin 8, we get

=

1< o < : [ﬂ-ill}-iﬂ]
sind cos 6 2]
i.C., I}# = cos H or COs H{M = |

When @ — 0, cos i — |

is sandwiched berween | and a quantity Note:

The same result holds

Since

approaching 1 itself. So, by the sandwich theorem, it must also S
: . sm b 2
approach | that 1s, I_]:‘II; H =1
o . sin7H
Example 8:  Evaluate !iu}]l —
Solution: Let x = 70, so that H=%
When 8§ — (0 we havex — 0
fag il S SR ool IO g
H—i A [y N 1 el
7
. l=cos 8
Example 9: Evaluate Llng
o l-cos® 1-cosf l+cosf  1-cos’B
Solution: = . =
i f I+cos B B(l1+cos 8)
sin’f [51:1[] (1 )
=—————=35in B
8(1+cos d) LB A l+cosd )
[ 1-co i [ 1
le(ﬂ = Lim sin 8 - L1mﬂ- Ll —\l—{ }{'[‘] )
0+ 0 | W0 [ ,_\\[4.,:05[]‘] |1 1
P~ EXERCISE 12.1 4
1.  Find the hmil ol the following sequences 1F exisis:
Zn+3 Er!+3 Sm H} In+1

(1) a,=

n) b= (1) o, = v
n+1 () n+1 o 2n+3 34 Er.! +n+d




v

Ll

e

<o

Evaluate each limit by using theorems of limits:

(i) Lim(Zx+4) (i)

%3

L_in’lnr Y’ = Dx 4 d)

(iv) Limdx+4  (v)

X »2 X »d

Evaluate each limit by using algebraic techniques:

g o o ww | 32+ dx
(1) Lim (i) Lim| ———
==l x4 dpdd o ke o
H - {- 1 1
; . =3x"+3x-1 P [ . O
(1v) Lim . (V) L1n1| . )
x el i e wovtl o pf—

o

{vii) Lu.n {viii) ]rm.;}

i
Evaluate Ih-, Tl.1||l:h'=1|'|5 limits:
() L Sm 3 () Lim sin x
=+l ¥ T =il x
. . & . &in
{iv) Lim Bl iv} Lim =
AT L—§ x—+1 HTI'I.E}I
T o R MYVIO U S
x-all A a l—l:-'l.}ﬁ{!'ﬂ
o Xk Sx+d ; . X -
(x) Lim —— (%1) Lim—
so-= x? 4 3x—4 a=1 =]
[ & X [ress each limit in terms of &,
. (1Y : AR
(i) i —T (i) I|m| I--—J
0 ——a i ) F
: : | 4
{iv) Lim (1+—I (V) L|m| | +— T
n -|-+.'\|-I\‘IL 3” & =%+ ﬂ
| I
(vii) Lim(1+2x")" (viii) Lin;:{]—zh}"
X !
(x) Lim&— x<0 (xi) LimZ i
¥ ol = X0 o
e —1 e* +1

Limiy/x'+1 -+ x +5

mathemaries (T T

(i) Limyx®+ x+4

.q
{vi) Ilm 2x° + 5x
Jao-2
{ - S L
(iii)  Lim| —- -
"‘—.“.1' + xi— ﬁ 4
-32
(vi) Ln‘n —_—
"'|| X _4.]- ]
P M "
Jrsh—dx (ix) Lim——%
dora X =il
fil Flggn-pasd
o gin O

i > X
{vi) Lim-
=0 fan x

(1x) Tim- “n H

Hopdi |]

(xii} Lim : -l]

'_H:'\,IT !...! i

(iii}) Lim [l—l :l
H.

I+

(i) Lim(1+3z)

{ix) Lun[— |
] +x 4
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12.3 Continuity and Discontinuity of Functions

12.3.1 One-Sided Limits

In defining Lim f{x), we restricted x in an open interval containing ¢ i.e.. we studied
the behaviour of f on both sides of ¢, However, In some cascs il 18 necessary 1o
investigate one sided limits that s, the left hand limit and the right hand Timit.

{i) The Left Hand Limit

Lim f{x)=Lis read as the limit of f{x) is equal to L as x approaches ¢ from the lefi

i.e., for all x sufficiently close to ¢, but less than ¢, the value of f{x) can be made as
close as we please to L.
The Right Hand Limit Bl the rules for

Lim f(x)= M is read as the limit of f{x) is equal 10 M as x calevlating the left hand
vt and the right hand limits

approaches ¢ from the right i.e., for all ¥ sufficiently close to  arc the same as we studicd
¢, but greater than c, the value of /{x) can be made as close @ Wl‘fulﬂt‘-‘- 31'{”“* in the
as we please to M. _ preceding section.

12.3.2 Criterion for Existence of Limit of a Function
Lim f(x}= Lif and only if Lim f{x)}= Lim f{x}=L

Example 10: Determine whether Liﬂjl_,r"{.t} and Lim f(x)exist, when
A2 x 4

241 if 0=2x=2
flx)=4{7-x if 2<x <4
| * if d4=x =6
Solution: (i) 1]_,EI:]_f{.E}= !..iﬂ_t{Ex-- N=44+1=35

Lim f(x)=Lim(7-x)=7-2=3

Since Lim f{x)=TLim f(x)=3
Ll e

— LLrg f(x)exists and is equal to 5.
(i1} L:iti] _f{.::}=Lir5‘!I{?—.=:}=?—4=3

Lim f{x}=Limix)=4
¥ 4

Since Lim f{x)}= Lim fi{x)
X -ad T

Therefore, Li'rr;:_;" {x) does not exist.
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12.3.3 Continuity of a Function at a Point

(a) Continuous Function

A function s said to be continuous at @ number “2” 18 and only 1f the following three
conditions are satisfied.

(iy ) is defined (i) LIE‘J Six)exists {iii) le f({£)= [f(e)

(b} Discontinuous Function
If one or more of these three conditions fail to hold at “¢”, then the function fis said to
be discontinuous at “c”.
=1 . T —
T discuss the continuity of fatx = |.

Example 11: Consider the function f{x)=
x—

Solution: Here /{1 is not defined.
= f{x) is discontinuous at 1.

Example 12: For f{x)=3x" —5x+4, discuss continuity of fatx= 1,
Solution: Lillll_flfx] = Lin}f_'_‘px: -5x+4)=3-5+4=2and f{I)=3-5+4=2

= Lim f(x)= (1)
|
Therefore, f{x)is continuous at x = 1

Example 13:  Dnscuss the continuity of the functions fix) and g{x)atx =3

L

. i f xz3
(a) f={x-3 =7

(i il x=3

(b) g(.r}:{’:f if x#3

Solution: (8) f(3) =6
MNow, Ifirgfll’.:n:]':Lim-JL —

r=+3 ¥

RCRRTE 2]

™ I:l_.J M

= Li.i'i;t[.r+3}l =3+3=6
As  Lim f(x)=6=f(3) (0, 3)
S x) 15 continuous at x = 3. 1t is noted that there is no break /
in the graph.

¥
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¥ =

(b} g(x)= if x=3

r—

As plx) 15 not delined atx =3

= pix) 13 discontinuous al x =3

It 15 noted that there 15 a break i the graph at x = 3 near

x=3

Example 14: Discuss continuity of f(x) at x =3, when
[x=1 , if x<3

fix)= 1

2x+1 ., f 3=x

L.

(0. 3)

W

Solution: A skeich of the graph of /'is shown in the figure (iil). We can see that there

is a break in the graph at a point when x = 3.
Now f(3}=2(3)+1=7
= Condition (i) is satisfied.
I.it13 Fix)y=Lim{x-1}=3-1=2

Lim f{x)= Li]‘!‘{'l‘_lzzx+1}=ﬁ+l =7
Lim f{x)= Lim fix)
x -3 i-nd®

1.e., comdition (1) 15 not satisfied,
Lim f{x) does not exist.

Hence, f{x) is nol continuous at x =3

V" EXERCISE 12.2

4

]
| P\\I‘

e M

{

Pt

ame

I. Deterrmine the left hand limit and the right hand limit and then, find limit of the

lollowing lunctions whenx — o
; 1 iz J‘.'_:'—';J]'
(i) Sflo)=2x+x-3¢=1 (i) fix)= — . c=-13
(iiiy J{x)=|x-3,c=35
2. Dhiscuss the contmuily of flx)alx=¢
, : Ix-1if x=1
. . [2e+5 ifx=2 , e=2 . _
(i) flxh=+ : (i) f(x)=< 4 Wig=1 , u=1
|4x+1 if x> 2 -
2x b x=l
i if X F,
3. Mflxy=yx’—1 if —2<x<2 Discuss continuity al x =2 and x =2
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[x+2 xs-1 _ :
4, If f(x)=¢ find " so that Lim J{ x) exists,
L |

c+2  x>-l
5. Find the values m and n, so that given function Fis continuous at x =3

mx if x<d ;
mx 1 x=3

(i) filx)= il it x=3 {ii} _f’{r];{ ;

r i x=3
x40 if x=3

JI-}- |
[mf2x+5—JI+T e /
; i ¥l
6. filx)= x=2
. K . ”
£ ﬂ: ‘!:-
Find value ol & so that fis continuous x=2. [T 1 3 //1 TR L
s AT 2x+3. x=1 ' '
7. Goven the lunction fx)= '
5 —-x+4, x>1
Discuss the limit and continuity at x = 1. .

12.4 Application of Transcendental Functions to Limits and
Continuity on Real World Problems

Limit and continuity of transcendental functions are fundamental coneept in calculus
wilh numerous real-world applications.

These concepts help us model analyee and solve problems in vanows Hields such as
growth and decay, finance, cconomics, surveying and predicting long-term stock
prices.

Example 15: Growth and Decay (Radioactive Decay)

The radioactive decay of a substance is given by the function A1) = 4™, where 4 is
the initial amount of substance, & is the decay constant, and 1 is the time in years, Find
the limir of the amount of substance as ¢ — .

Solution:

We need to compute the limit: Lim A(¢) = Lim 4,¢ *
Ast>me™ 30, so LimAe™ = 4,x0=0

Thus, the amount of radioactive substance approaches 0 as time increases indefinitely.
Example 16: Finance {Compound Interest)

The wvalue of an investment grows according fo the formula for continuous
compounding A{r} — P&, where I” is the initial principal, r is the annual interest rate,

and ¢ is the time in vears, What happens to the value of the investment as ¢ — =7
T ——
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Solution: We need to compute the limit: Lim A(¢) = Lim Pe”

[T
Since ¢” —» e ax § —oofor any positive r, the value of the investment grows without
bound:

LimPe ==
i

Thus, the value of the investment increases indefinitely as time approaches infinity.
Example 17: Economics (Supply and Demand)
In economics, the demand function Dip) decreases as the price p increases. Suppose

the demand function 15 given by D p) = ik . where p1s the price 1n dollars. Find the
P+t

limit of the demand as the price becomes very large, i.e., Lim L{p),

: ; ; . 100
Solution: LimD{p)= Lim——
n—s= g—r _F'+]

As p—» oo the denominator becomes very large, so Lim iﬂl =0
P = P +
Thus, as the price becomes very large, the demand approaches 0.
Example 18: Astronomy (Apparent Brightness of Stars)
The apparent brightmess B(d) of a star decreases as the distance from Farth increases
following the inverse square law Bid) = ‘:’; where L 1s the star's luminosity. Find the
i
limit of the brightness as  — o0 .

Solution: ll?} Aid)y= ]}l]} -

As d —» oo the denominator becomes very large, so:

ikl

hm—=0

d v of
Thus, as the distance increases indefinitely. the apparent brightness of the star
approaches U,

¥ EXERCISE 12.3

. A substance decays exponentially following the formula A(r) = dpe™", where A,

15 the mitial amount. Find the limit of A(f) as { — oo,

| 00, Q00

[

A lown’s population 15 modeled by Fir)=-

. What 15 the long-lerm
1+ Y

population as r —» o
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.

A company’s weekly sales (in thousands) follow the function §{t)= —— . What
4 10}

is the limit of 5() as r — 2 and what does it represent?
: " : o 1ODO
Signal strength S5{d) at a distance o from a tower is modeled as S{d )= ——.

(i) What is the signal at = 107

{11) What happens 1o signal strength as o — o

A stock price grows according to the function P(r)= 50e""
(1)  Find the limit of P(f) as ¢ — o,

(11) Calculate the price after 10 vears.

The factory™s cost function is given as:

{I Ox+500  if x< 100

Cix)= .
12x+300  if ¥ =100

Is the cost function continuous at x = 1007

Inflation is modeled by /() = f4e"™, where fy is the initial price index and t is
the number of yvears

(i) Find the inflation rate afier 3 years il f =100,

(1) What 13 the expected price index atter 1 years?

I'he cost to produce x uniis is

{5,1:-}‘1'] if x=10

Clx)=
(x) 6x+10 if x>10

Is the cost function confinuous at ¥ — 107



Differentiation

INTRODUCTION

The ancient Greeks knew the concepts of area, volume, centroids etc. which are related
to integral calculus. Later on, in the seventeenth century, Siv Isaac Newton, an English
mathematician (1642 — 1727 and Gottfried Whilhe G, W. Leibniz, a German
mathematician, ( 1646 — | 716) considered the problem of instantaneous rates of change.
They reached independently to the invention of differential calculus. After the
development of calculus, mathematics hecame a powerful tool for dealing with rates
ot change and deseribing the physical universe.

13.1 Tangent to a Curve at a Point 4 o
Let Pix, f(x)) and O(x + bx, f{x + 6x)) be two '
points on arc AR of graph of f defined by the £ + . fix + )
equation ¥ = flx) as shown in Figure 13.1.
Where dx is the increment in the value of x (read oo e
as delta x) i -
The line P 15 secant ol the curve and slope ol & P i
scent line passing through Pix, Ax)) and O(x + éx, TERWEL 1)
fx+ ) is: gy = RQ _ SO +8%) = f(x) (1

PR Gy
Where m.e. is slope of the scent line, ¥
Revolving the secant line PO towards t B
P, some of ils successive positions 4;;":# -
PQ, PO,, PG,. .. are shown in the ‘ E”,-':If‘,afﬁ"“ =3

Figure 13.2, Points 20i=1,2 3 ..}
are getting closer and closer to the

point Pand PR I.e.6x(i=1 2,3,..) Figure 13.2

are approaching zero.

In other words, as #r — .the point O approaches P, and the secant line becomes (o




Differentiation é’ib Mathematics m

the tangent line. The revolving secant line becomes the tangent line PT at P while dx
approaches zero, that is,

m_ = Lim f[r+ﬁj} =
ar =0 tu_-

w2y

where m denote the slope of tangent hine. we sec that m 15 the limit of m_ as @

approaches P along the curve v = f{x)

Example 1: Find the gradient and an equation of tangent line to the graph of

fix) =22 at the point P(—1, —1).

Solution: To find the gradient or slope of the tangent line at point {(—1, —1), putx = —1
in equation (2)

< LB A
L s ) 4 =R E =T
lkan) —2—((-1)-2) e .
= Lim - S
iy — 10 Q‘L"L' 1-1 2 ,
Lrig ]
g 1=+ 88 -2-(1-2) o WD
i ow ax —H—f—ar-i T 2 B4
i -
o 1-2ex4E®—241 ... — 28+ Ex (el BN %
=Lim : = Lim - 2
Bt w0 fix 3
; : 4
x| —2 +dx R
= Lim ¥= Lim [—Zéﬁx}= =5 (Ll L R
iy —1l e [T |

Now to find the equation of tangent line we use the point slope form of equation of line
with slope = =2 and point (—1, —1)

y={=D==2{ (-1})} = y+1=-2x-2

or y=-2x -3, which is the required equation of tangent line.

The graph of f and tangent line are shown in the adjacent Figure.

13.2 Derivative as the Limit of a Difference Quotient

Let f'be a real valued function continuous in the interval (x, xeb, {domain of ),
Lo . Y

X=X

then difference quotient

represents the average rate ol change in the value ol fwith respeet w the change ¢ -y
in the value ot independent vanable x.
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If x, approaches to x, then ijM
noex X =X

provided this limit exists, is called the instantaneous rate of change of Mwith respect to
xand is written as /{x),

If n=x+lx ie, x—x=dn, then the expression (i) can be expressed as

flx+dx)—fix) (ii)
S ,
and Lipg L 881 =) (iif)
de—adl ax

provided the limit exist, is deflined 1o be the derivative of /{or differential coefficient
of /') with respect to x and is denoted by /() (read as */— prime of x™). he domain of
[ consists of all x for which the limit exists. If x= [ and /'(x) exists, then fis said to

be differentiable at x. The process of finding /' is called differentiation.

13.2.1 Derivative as the rate of change of velocity

The rate of change is a fundamental concept in describing the motion of an ohject

moving in a straight line. In physics, this is typically analyzed using position, velocity,

and acceleration, which are all related through demvatives (rates of change).

The position versus time graph provides a simple interpretation of the average velocity

over a given time interval.

Suppose a particle moves in a straight line and its position at time 7 is given by the

function 5(7). The average velocity over the interval from ¢ to £ denoted by v is

defined as:

_ st ) — (1)
L—t

...... (1)

e
iy

Equation (i) also represent the slope of scent line passing through the points
(r.5(r)) and (¢,,5(¢,)). If the interval f,—¢ 15 not small, this average velocity does not
accurately represent the rate of change at time 7.

Tao illustrate this, consider a particle whose position at time ¢ (in seconds) is given by a
function g{¢)=¢* +¢ in meters. The average rate of change over various time intervals

starting at / = 3 seconds is shown in the table helow:
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Interval #=3 decs to = 5 secs =3 sepsto f =4 secy {=34ccs to f = 3.5 secs
3
Avera f51—a3) 3 -12 sd—s3y  20-12 —12
""I LEE = = El = = 3 .'.If35]| - '1[.3.] 4 ? 5
) 5=3 2 4= 3 1 = e
i LE 0.5
Jl.-}- JI.'|I ILII:
S S S0}
A A Ai}
30 30 £11]
) Si-iimik] 2 2
= e i L =4 1578 j3e1.95
k| ____.--'"f G X i = i " B [l F E T X
a1 2334 5 60119 124 569 1234 § &

We observe that these values are not closely approximate the particle’s velocity at
cxactly 3 scconds. To obtam a better approximation of veloeity at x =3, wo use smaller
intervals:

Interval Average velocity
i i T )

=3 seosto =231 secs w31 +3.0 ]"_ﬂ"ﬂ_?l]

3.1=3 0.1

3,005 +3.013— 7

{ =3 secs bo ¢ = 3.0/ secs UL +3.01) 12 o 0.6701 o

A0 =3 .01

g . o]

£ — % sers 10 i— 3001 sece SERO0T + 3000 12 ; 000300 2001

3.001-3 0001

We see as the length of the time interval decreases, the average velocity becomes
instantaneous velocity at + = 3. Based on the wend, we estimate the instantaneous
velocity to be approximately 7 m/sec.

Thus, over a sufficiently small interval, the velocity changes negligibly. If 11 is very
close to 7, the average velocity over p —¢ approximates the instantaneous velocity at 1.
As i approaches {, the average velocity is called the instantaneous velocity.

This is similar to approximating the slope of a tangent line by calculating the slope of
a secant line. Mathematically, the instantaneous velocity denoted by vi 18 given by
the following limit:

v = Lim =50 provide the limit exist)

A [=t
For convement, if { =1+, then as § — ¢ =>a¢ — 0| thus above equation becomes:

s+ 80—l
‘PIIII.\.I' o L".-” b{ } :‘I{ }
fir wid o

...(ii)
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In other words, the instantaneous velocity is the derivative of the position function s(¢)
with respect to lime.
Example 2: A particle moves along a line such that its position aller ¢ hours is given
by: s(t)=4¢+ 2t + 1(in miles)

(a) Find the average welocily owver the  interval  [2, 5]

(b) Find the instantaneous velocily at 1= 3
Solution: (a) give position function s{/) = 4£ + 20+ 1, where 2<¢ <3

The average velocity is over the interval 2= < 5 15,

sS)—s@ U5 +2(5)+1-[4(2) +2(2)+1]
BT 3
1HI=21 90

- ——— = — = J0miles/hours
3 3

Average veloeily= Vo

(b) Instantaneous velocity can be found using the formula

[nstantaneous velocity = Lim slt+80)-str)

fir a0 Al
A3+60Y +23+80+1-[4(3) +23)+1 |
= Lim -
Gt —= 1 i
i A0 08¢ + 817 )+ 6+ 25 +1-43
 ir-sD &t
. 364248t + 4587 + 6+ 261 +1-43
= Lim -
i —s 0 hr
A3 268044807 —43 . 2680+ 48F°
=Lim - =Lim -
B ==l E'I'f ] hr

ol d
— {Eﬁ_ b i )
B —0

= Linul[iﬁ b 4dr) =26
Thus, instantaneous veloeity at £ = 3 15 26 miles/hour

13.3 Process of Finding Derivative f"(x) by Definition
13.3.1 Notation of Derivative
Several notations are used for derivatives. We have used the functional symbol /(x),
for the derivative of f'at x. For the function y = f{x).
y+ay = flx + bx) o A1V)
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Dividing both the sides of (iv) by dx, we get
a8y _ f(x+8x)—/(x)

(v
& dx
Taking limit of both the sides of (v) as dx — (), we have
sy . .
Lm]i= Lim Jlr+ow) - fx) e}
BEs0fy Grd Ay

Lim E is denoted by ﬁ L &0 (wi) 1% written as E = "{x)
fir =m .ﬁ_r d.l' * ;

The symbol AV ic used o the darivatne of ¥ with respect to x and here it is
iy

nol a quotient of dy and dx. %is also denoted by y'.

Now we write, in a table the notations for derivative of v = fix) used by different
mathematicians:
Name of mathematician Leibniz Newton Lagrange Euler

2y or Cid [ {x)ory” | fix) Dftx)
ifx el

If we replace x | &x by x and v by a, then the expression / (x ' 8} —f{x) becomes J
{x)— f{a) and the change dx n the independeni variable, in this case, 18 v — a.
Sl +0x) = F (2 5o weritten as )= f{a) (wii)

o r—a

Motation used for derivative

S0, the expression

Taking the limit of the expression (vii) when x — a, gives LimM= f'(a).
r48 Xy

Here {"(a) is called the derivative or gradient of fat x = a.

13.3.2 Finding f(x) by Definition of Derivative

Criven a tunction £ then f Tx) bt exists, can be found by the following four steps:
Step I:  Find fix — éx)

Step 11: - Simplify fix + 8x) — flx)

Step 1II: Divide flx + ax) — fix) by ox to et J(x+6x)=f(x) and simplity it.
&y

Step IV: Find Lim .».'.'"if"’fﬁ:?}—_f'[’f!
ol ax
The method of finding derivatives by this process is called differentiation by definition
or by ab-initio or from first principles.
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Example 3:  Find the derivative of the following functions by definition
{a) flx)=¢ (b) flx)=x

Solution: {a] Forflx)=¢
(i fix+td)=c
(i} fix+éx) fxd—e¢ =0
(iif) Flx+8x) - F(x) =£={]

o ax
Jix+dx)= fix)

(v} Lim

Aoy wn b

= Lim(() =0
o x -~k

Thus, f{x) =0, that is, f:l— {c)=0

[y
(b) Ax)=x"
(i) flx+8)=(x+dx)
(i) fix+8) flry=(x+8x) 2 =2+ udir = (6x)° 22 =(Z+ ) i
T s e 0 Y e L IO e B

dor
, . Lim ﬂx-'-ﬁ'f}_"r{'ﬂ = Lim(2x+8x)=2x
{1"-'} fr— 11 ek B —+ 1)
e, Fx)y=2x

Example 4:  Find the derivative of [y al x = a [rom [irst principles.

Solution: It j'{ﬂ:ﬁ . then

(i) flx+dx)=+r+dx and (i) flx+dr)- fn=vx+ar—x
(e dr =B+ 1) [mﬁnna]izing the ]

Jr+dx +4/x numerator
_ x+dx-x
x 18 ++fx
e, S+ )= —— (1)

S+ b+ \fr;
(1ii) Dividing both sides of (1) by ax, we have
Jlx+ox)=Flx) ax
i " e Jr+ 8z o)

|
- \|'1'+Fux-i—«.|'"1_' 4

dr = 0)
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(iv) Taking limit of both the sides as &x — (), we have
Lim / {I+hf}_'f () _ Lim

[ 1
r—+ 0 fix sx—,u|,\\,.l'}|- + By + X J

L x=m and  fla)=

Ty R |
Le., [ {x) \1":+1,G L,.'r:l_' 5
Alternate method:  Putting x =ain f(x)=~/x, gives f(a) =va
So, fx)= flay=+/x—+fa

Using alternative form for the definition of a derivative, we have
f(6)- fla) _Nx-—Ja
x—d f—a
_ (N =ayx+a)
(x—al~x +a)

X—da

|
Cx—advx+a) Jx+afa

Taking limit of both the sides of {2) as x — a, gives

3

(rationalizing the numerator)

. (x#a) (2)

- fta) 1
R P A o
ie. fla) = 2:,;

which 1s the gradient of fat x =a.

Example 5: If = L\__ then find “r_L' at x =— 1 by ab-initio method.
S & dr
Solution: Ilere, ) - L S0 (i)
2
. 1 i
Vb= — {11)
(x+ay)

Subtracting (i) from (ii), we get
I R e LR Y
(x+8xY x° ¥ (x+dxy
_dx e @i ix - (x4 80D}

< (x+ Bx)

by =
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(2x+ dxH—-8x) —dx(lx o _Eur}

i)y B R : (iii)
x(x+dx)’ x*{x+ fx)’
Dividing both sides of {111} by dx, we have
v —i(2x+dx)  —{2x+ i) (6 =0)

fr xi(x+dxn) i x(x+ax)t
Taking limit as éx — 0, gives

AL e | t“-z
D gy B0 x(x+8x)
—(2x) = : S
= r—— {Using quotient theorem of limits)
ixT) :
S ﬂ=__3 4 & =__2=__2=g o The value of % at
de X del..., <1} -1 dx

- i - dy
=2 3 . x =—1 is written as ——
The gradient of fat x=—1 ism=2. dr|
13.4 Derivation of x" wheren € Z

(a) We find the derivative of x" when n is positive integer.

(a) Let y=x". Then
ydy =(x4ax)"
and Gy =(x+ax)" —x"

Using the binomial theorem, we have

5.v=[.t“+nx"' - dx + H[IEUI“'?{M}! g e o o Rt o
: el g | vt ;
e, &= 8| w4 il PO S o ') (i)
| E 'J
Dhividing both sides ot (1) by dx, gives
L N Ll JUTL I R W U (if)

i
O |2
Mote that each term on the right hand side of (i1} involves dx except the first term, s0

taking the limit as 5x —» ), we get & N T
el

Az p— X", 50 d (il = 0
dx
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{b)y Lety =x" where n is negative integer,
Let w = —mim is a positive integer). Then

p=xt=— (1)
x
. 1 .
d y+dy =—
G {x+dx)" ()
Subtracting (1) from (11), gives
1 I 2" —(x+ )"

(x4 6x)" Tt g (x +8c)"
¥ =[x" ™ Er 4 g 1) ") + .+ EN)]
2
I-r.l.'i c' .'I_ g .b"r:'m
{expanding {x + &)™ by binomial theorem)

|"' — b
| mx™ 1+—mLE e {Bc)™ ™
= _fx- -
XM x+ax)”
: - § &
and EJ— =——-—]-—_ ----- N R U SR PR (f)" "
ox XU (x4 6" 12 .
Taking limit when &x — 0, we get
dy —1 PR :
=2 —— . mx™ ' (all terms contaning &x vanish)
de  x"-x
=—mx" " T
ey
=T A e e s palled
= nx""! [ —m=n] il
" power rule, Where ne R
d {I} i
ar =HY

dx
S0, we have proved that %{;“j =nx"", ifneZ

The above rule also holds if n € O Z, i.e. for rational powers,

2 I 2
For example, if_:;-‘].: E_r‘ I=;
dx 3 :

3

The proof of i“-" y=nx" ' when pe & — Z is left as an exercise,
el
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13.5 Connection Between Derivatives and Continuity

Calewlus 15 a powerful branch of mathematics that allows us to study change and
motion. Two of its foundational concepls of continuity and derivatives are deeply
conneeled. While cach coneepl has ils own delindtion and application, understanding
how they relate to cach other s essenbial for solving real-world problems m
mathematics,

As discussed in previous units, a function is continuous at a point if its graph has no
breaks, jumps, or holes at that point. On the other hand, the derivative of a function ai
a point measures the instantaneous rate of change or equivalently, the slope of the
tangent line at that point, However, this definition depends on the function being well-
behaved around the point. This leads to a well-known result:

If a function is differentiable at a point, 1t must also be continuous there, This means
that differentiability implies continuity, but the reverse is not necessarily true. For
example, consider the function flx)=|x| , clearly this function is continuous at x = Ofsee
Figure 1.1). Now we check the differentiability of fix)=]x] atx=10.

Ax) =
F0y =0 =0 and,
F(0+ dx) = |0+ dx| = x|, T
0 f(0+8x)— f(0)=|dx|-0
- S0+ m}--_f(ﬂ}zlﬁtl ;
Bx Bx £ »
; i
.| 6x|
Thus = |_
f=Lim=—
Because |6x] = &r when x>0 -
and |G« B when éx < 0, y Taeweelid
50, we consider one-sided limits
: O . Ox : o . —i
Lim u = Lim=2=1 and Lim | _1 | = Lim _—T:—l
ir—0' O A0 By dr—0 AT e — 1 3y
The right hand and left hand limits are not equal, therefore, the im E does not exist.
a0 By

This implies that derivative of / at x = 0 does not exist, and thus, there is no tangent
line to the graph of f"at this point (see Figure 13.3). however the derivative exists at all
other points of fi.e, it is | on the vight side and 1 on the left side. A function can be
continuous at a point but not necessarily differentiable there,
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P EXERCISE 13.1 §

[.  Find by dehimtion, the denvatives wor.t. "x" of the lollowing functions defined as:

(i) 2x7+1 (i) 2—x (i) % {iv) xlr—3)
X

2. Find == from first principles and lind gradient of the curve at the given point:
iy

() Jx+Zatx=6 (ii) atx=ga
x+a

3. Find the derivative of «* atx = 8 from the first principle.

3. Find the derivative of x* + 2x + 3 by definition,

4. Find from first principle, the derivatives of the following expression w.r.t, their
respective independent variables:
(i) (3x-2)" (i) (2x+3) (i) (ax+8)

5.  Find the gradient and equation of the tangent line to v = 3x*— 4x+1 at x=2.

6.  For the function f{x) = 2x'+x, calculate the equation of the tangent line at x = —1.

7. Find the coordinates of the point of taneency and the equation of the tangent line
lorfixi=x"-2x+l atx= 1.

8.  Find the gradient of the curve f(x) It +2vatx=1.

Y. Find the gradient and an eguatsion of tangent hine to the graph of fix) = ﬁ at
=9

10. The position of a car after ¢ hours is given by: s(r) = 2F°—3¢ +  (in kilometers)
(a) Find the average wvelocity over the interval [1, 4]

{b) Find the mstantancons veloeity at § =2

11, A stone is thrown upwards and its height after 7 seconds is given by;
sli)=—16¢ = 32¢ + 10 (in feet), Find the instantaneous velocily at i =1

12. The outdoor temperature (in °C) over time is modeled by: T =— £+ 12t + 10,
where ¢ is the time in hours, Find the instantaneous rate of change at ¢ = 2.

13.6 Theorems on Differentiation
We have, so, far, proved the following tow formula:

] i({_’} = L., the derivative of a constant function is zero,
ax

2. i (x"}=snx""" power formula {or rule} when » is any real number,
dx
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Now we will prove other important formulas (or rules) which are used to determine
derivatives of different functions efficiently, Henceforth, in all subsequent discussion,
1o, hete, all denote functions differentiable at x, unless stated otherwise.

3. Derivative of y = ¢fix)

Proof: TLety = ¢ flx), Then

() p+déy  =cflxt ax)and

(i) y+ay—y=cflxt ox)—cfix)

o dv = e[ Ax+ dx) — fix)] (Factoring out ¢)
Giy = [f'iﬂ &)~ /() I]
vy ay J

Taking limit when dx — ()
LSerE) -S| fer e - f()
ar fr = 1 el s

A constant factor can be taken out from a limit sign.

i L :
(v} Lim 2 Lim
Gr+0Fy br+0

-

Thing, B iy Mot far T = b won i
us o of (X thatjs[t,f{.rﬂ of {x) or .sirh'ﬁ'tﬂ C.ir["r{x”

+ 4
Example 6: Calculate i(}_ﬁj =3i{x3 ) {Using Formula 3)
dx dx
=3x %\_I - 41i {Using power rule)

4. Derivative of a sum or a difference of lunctions
If fand g are differentiable at x, then f+ g, f— g are also differentiable at x and

LTy oy
[f{x}*g{I}T = [(x)+ g'(x), that l-‘hdx[.ﬂlﬁzzh}l ﬂt!‘:[.fU'iZI']+I_fl{{[i.'ﬂlll]

Also [ f()-gx)] = £(x)- g(x). that is, | £(x) g(x)] =" )] - g()]
dx iy dx
Proof:  Leté{x) =fix)+ gix). Then
{i)  @{x + dx) = fx—_6x) + glx + dx) and
(1) ¢x+dx) — @lx)=fix + dx) + glx + &x) — [Ax) + g(x)]
= [ flx + dx) — fix) + [glx + bx) — g(x)] irearranging the terms)
(i) Pl x+ 8x)—g (x) & Jix+dx)— fix) : glx+dx)—glx)
5 dx i
Taking the limit when dx — 0
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(iv) I.im'iﬂrp“‘?ﬁ'_‘:_]'_'i?*l[.t}:]im[;'{x+§uﬂ—.}"(ﬂ B+ Br)—g(x) :

e 20 ax 6 e i iy _
i LOF IS (e 0 g0
fx —+ 01 iy -'_‘-'r—-{l

(The limit of a sum is the sum of the limits)

@ x) = fx) +H'{ﬂ that is Lf{ﬂ +glx)]'=fx)+g' (x)
or [ Fix}+ g{.‘!.}] = ffI:I]+—[S{-T}]

The rnrmf for the wcnnd pdrt is smlﬂar.

Sum or difference formula can be extended to find derivative of more than
two functions.

Example 7: Find the derivative ol = i__—i--‘ +Ex"+lx"+ Iv4 5wl x
4

Solution: ;-:Ef.,.%x-‘_,_ll-!_'_ 25+ 5
o4 3 2

Differentiating with respect to x, we have

gy, d13 4 X5 1 4 di3 .,y df2 , ik
—=—| =y =X =+ xS = — | Sx b —| —x —| L
dr  dv| 4 3 o de\ 4 ) ode\3 ) de\2 S dx
{Using formula 4)

=%;—i{x“]+ ; :r{ r"“]-l-%%(_r :}+2i(_1-]—u {Using formula 3 and 1)

3 4-1 2 =1 1
= (4 Sl - ¥ e
4{ X ) 3{ X ) 5

(2x "+ 21.x™) {By power formula)
=3 +2¢ +x+2

Example 8: Find the derivative ol y = (x* — 5){x” + 7) with respect 1o x.

Selution: y = (x' * 5)(x" | T)=x" | 57 | Te® 1 35

Ditferentiating with respect to x, we get

dy  d 5
= = — [ + 50 + 72 +35]
drx dx
= j:l (x" )+ "5—{1 ]+T—[I ]+—{15} (Using formulas3 and 4)
dlx

=5 sx3x e TR 287 40

=52 +152° + ldx
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Example 9:  Find the derivative of y = {2/ + 2)(x— /%)

Solution: y = (2x + 2)(x—+[x)
=20 + oWy - D= 24 i -

3 |
= 2% (x=1) = 2(x7 - x7)

Intferentiating with respect to x we have

5. Derivative of a Product {The Product Rule)
If fand g are differentiable at x, then fz is also differentiable at x and
LAxdglad]" = Fix)glx) + £ (x) gx), that 15

d . d i rgel d
E” (x)glx)]= [E[I I.‘xh]—‘ gix) +f {I}[ o [ﬂﬂ]—‘

Proof:  Let ®L6)= f(x)g(x). Then
{1} Plx — dx) = f{x + dx) g{x + 8x) and
(ii) i+ B @) = fx + &x) gix + ) () 2(x)
Subtracling and adding {{x) g{x + &x) in step (11), gives
glx — ax} - @lx) = f(x + dx) glx + ox)  F(x) glx + dx) + £(x) glx + dx)
SxhEix)
= [fx + &x) —f{x}] glx + &x) + f(x) [ glx + dx) — g(x)]

(i) Pt dn)—g(x) T (x4 B — f(x)
iy : i

do

Taking limit when dx — 0

-‘E[x+fi'c‘.l+fl.’x’.l[g{x+aﬂ__g(ﬂ]
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ghlx + dx) g (x)

(v} Lim
fir —+0 fike

g(x+8x)—gix) |

i | F{xaE) =) i

_%ll;l?]-[ Ex " g{_{+m]+_f{'-‘:} a: |-:

2 E_irr: A ﬁ;;— /() leg{r+hx‘]+ le f(x)- Lim 2l +0x)~2(x)
o] X dr il T

(Using himit theorem)

Thus ¢'(x) = £'(x) g(x) + (x) g'(x) Hi_{l;g{-wﬁxh g ﬂ|

|

Example 10:  Find derivative of v = (2fx 1 2)(x —/x) with tespect 1 x.

or —H"HJ gfr}]-—[ﬂxﬂ 2(x)+ ffﬂ[ -2(x)

Solution: ¥ ={(2vx +2)}x—+x)
= 2(x + 1)z —/x)

Differentiating with respec{ to x, we get

——EE [_‘\E'l‘].:ﬂ:l'- ‘\III'_}-|

ax
‘2|' inﬁu for= w"_i+h"_+|‘|.—(x «fr_‘h-|

15 LR
x? J{x J_}ﬂwﬂﬂlx[l-; - |-|
2 /]

= .r—q'?+ Xt (241
'ZL R ]J

=[x Vr+2e v+ 245 -D)]
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6. Derivative of a Quotient (The Quotient Rule)

If fand g are differentiable at x and gix) # 0, for any xe D{g) then L is differentiable
4

atm,,d[ S0 ] _ L g —f() £(x)
L g(x) ) [g(0)])

A T .
f[.r}l [ x["ﬂljljgm f':ﬂl_d,;[mﬂj]_;

that is — l = :

(x)] [g(o)]
Proof: Let g(x)= F(x) . Then

glx)
- Slx+dx)
) x+dx)= d
(1) @ix+dx) T an
() g(x+80)—p(r)=LEEH S Flx+8) gx)- () glx+5x)
glx+dx) gix) 2(x) glx +bx)

Subtracting and adding f{x) #(x) in the numerator of step (1), gives
Flx+dx) g(x)— filx)g(x)—F(x) g(x+dx)+ flx) g(x)

+ ¥ (x)=
x+dx)—p (x) O O
1
= - ox)— % L ) — ¥
e gu;.aﬂ“"r (x+8x)= SxNglx) = f(x)(glx+dx)- glx))]
(i) ﬁl{x-l-ﬁ.ﬂ'-gﬁ{.r] ff.r fx) - __.I'{.r} F0)— fia- E[Hm’ gZix)
de g0 .5f-r+ ) L fix
Taking limit when éx — 0
vy L T O )
= dl A
: | FE+&)=-f(x) ., . ... glx+dc—g(x) ]
s e ™1 e 15
@ IT‘[g{x} g[r+ﬁt}[ i gx)-f1x) fixe :|
Using limit theorems, we have
, 1 ’ . ; , :
@ (x)=————[f(x) g(x)— f(x) g(x]] o Lim g(x +dv) = S{IJ]
gix) - glx) s
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(f0 ] _ ) g0 () gw)
Lelx) ) [2(x)]

| ]

(I S N -
Flgcan [E{,Hx}]”g{x}— fx}| dxighml

Thus

del g(2) ) [(x))
2x' —3x +5
* +1

Solution: Let g{x)= 2x _3{_4—:’ Then

Example 11: Differentiate with respect to x.

flx)=2x"-3x"+5 and g(x)=x"+1

Now Fix)= 'f [2x" —3x" +5]=2(3x ")~ 3(2x)+ 0 = 63" —6x
[ERN
Ao o d 2
and gxX)=—[x'+1]=2x+0=2x
kY
Using the quotient formula ¢'(x) = AEIF{6) -'}rf'r} g [’r}, We obtain
[(x]]
d 28 =37 +5 | (687 —6x)x" + =227 =3x" + 5)2x)
eln x*+1 I| (x* W
. 6x' = 6’ + 61" —6x—(4xt - 65" +10x)
(x*+1)°
_6x —6x" + 627 —6x—4x" + 6x" — 10x)
- (x* +1)*
* 2x' +6x° —16x
(x° +1)°

P EXERCISE 13.2

1. Differentiate w.rt "x’.

() ¥ e2te () ¥ 12x-343 iy 2x=3
2 2r+1l
v Qo= [«f’?—lT (vi) & 33 )
\"ll_' X
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3 1 3
R ol i PR, Ut ; x—
(vit) L } R P— (1x) e—1
=] X x*+1
3
= o Ax +]
o A Ll (xi)
a4+ e |
L g P I —
3 Find 2 i e =1 e
Iy - :
L : L I
. e ¥ i e | —'_'I
3 Differentiate '-\"Ir'l' _l"' s . with respect 1o x.
'I_._—.'I_'T
. | . I:i’ll'
If =+ =—=, show thal 7, i l."T
4 gx
a 1o : + - X NE 1 T -!l'l'lI |
5. IWy=x*+2x%+2, prove that dxfy—1
X

13.7 Application of Differentiation

We will apply concepts of differentiation to real-world problems such as (profits on
diminishing returns, environmental factors, financial investments, population growth,
spread of diseases. movement of particles, ume-speed i transportation, structural
stress, material required that is changes in construction).

Profits on Diminishing Returns

Example 12: A company's profit function is given by P(x) = 100x — 5x* ,where x is the
number of units produced. Determine the marginal profit when x = 8 umts.

Solution: The marginal profit is the derivative of the profit function with respect to x.

F:xu—ium;—s.r‘a—mﬂ—mx
dy

Now, substitute v =8: F(E)=100-10{8) =20

So, the marginal profit when 8 units are produced is 20 (in the given currency).
Muovement of Particles

Example 13: A particle moves along a line according to the position function s(1) = 4°
=3¢ + 2¢, where #(t) is the position and ¢ is the time in seconds. Find the velocity and
acceleration at 1 = 2 seconds,

Solution: Velocily is the derivative ol the position [unction:

1*{':}—%[4!5 -3 +20=121" - 6¢+ 2
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Substitute ¢ = 2:
W2=1202Y -6(D+2=48-12+2=38
5o, the velocity at £ = 2 is 38 m/s.
Acceleration is the derivative of the velocity function:

F S
i) = .;1'"“2{- 6+ 2 =24i - 6
[

Substitute t =2
al2)=24(2)-6=48-6=42

So, the acceleration at ¢ = 2 is 42 m/s”,
Material Required in Construction
Example 14: A cvlindrical tank is being constructed. The cost C to build the tank
| (R0
, Where
a
the first term represents the cost T of the base and the second term represents the cost
of the walls, Find the radius that minimizes the construction cost,
Solution: First, find the derivative of C(#):

depends on the radius r of the base, and is given by C(r) =3000z+" +

d
dr r ] :
To minimize the cost, set C'(r) =0:
100000
100007y ————=10

R
Multiply through by # (o eliminate the fraction:
LO000me = 100000
Solve for #:
»_ 100000 _ 10

10000z«

1
1

H_(EJ = 1.336
X

&0, the radius that mimmizes the cost 15 approximately 1.336 units.

Financial Investments

Example 15: A bank offers a compound interest rate on an investment, and the value
of the investment after ¢ vears is given by F{¢) = 5000{ 1 +0.04t)°. Find the rate of change
of the investment value after 10 years.

Solution: The rate of change of the investment is the derivative of F{f) with respect to 1.

£ )
#"{1}!—%{5{.![]1'{1 L0 ) = SO0 CZHT -+ 0.040)(0.04)
¢
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Fi(fy= 40001+ 0.04¢)
Substitute t = 10:
FHI0Y = 40001 + 0,045 10) = 40001+ 0,407 = 400 1 4 = 560
5o, the investment 15 growing at a rate of Rs. 53600 per year atter 10 vears.
Structural Stress
Example 16: The stress on a beam under a varying load is modeled by S(x) = 500x —
2x", where S(x) is the stress in pascals (Pa) and x is the distance (in meters) from the
beam’s fixed end. Find the rate of change of stress at x = 5 meters.
Solution: The rate of change of stress 15 the derivative of 5(x) with respect tor.

S{x)- ;—I{SDGI— 2x*)=500-6°
'
Substitute x = 5:
(3= 300 6(5) =500 6x 25=3500-150= 350
So, the stress 1s increasing at a rate of 350 Pa per meter at x = 3 meters.

EXERCISE 13.3

5

+ . [l o | L)
I A car’s position at time t is given by s{f) = 5" — 3 + ¢. Find the velocity by

diflerentiating the posiion function with respect o lme.

2. Structural stress on a bridge is modeled by the function S(x) = 100 — 5x°, where x
15 the distance from the center ol the bndge. Find the pomt where the stress 1s
maxinmim and calculate the rate of change of stress at that point.

3. A company's revenue function is given by R (x) = 1000x —10x°, where is the
nurmber of units produced, The cost function is C(x) = 300y + 2000,

(a) Find the profit function P(x)
(k) TDletermine the marginal profit wheny = 15
{c) Find the number of units that maximizes profit
4. An investment grows according to the function A{f) = 10000 | + 0.057)", where
A(f) is the value ol the investment and (¢ is the lime in years.
(a) Find the rate of change of the investment after 8 years.
(b)  What is the investment value aller 8 vears?
(c) Dietermine the time at which the investment is growing the fastest,
a. The position of a particle moving along a line is given by s(8) = 3¢ — 126 + 8¢,

where #(1) 15 the position in meters and ¢ 15 the time in seconds.
(a) Determine the velocity of the particle at 1 = 4 seconds.
(b}  Find the acecleration at ¢ = 4 seconds

{c) When is the particle at rest?
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b. The positon of a car traveling along a siraight highway 15 given by
(1) =300 *— 41", where x (1) is the distance traveled in kilometers and ¢ is the time
in hours.
(a) Find the car's veloeity at £ = 3 hours.
(k)  Determine the car's acceleration atl £ = 3 hours
{c) After how many hours does the car reach its maximum velocity?
I'he stress on a beam under a varying load is given by S(x) = 400x —x°, where S(x)
15 the stress in pascals (Pa) and x 15 the distance from the fixed end in meters.
{a) Caleulate the rate of change of stress at 6 meters.
(b}  Find the distance where the stress is maximized.
{c) Is the stress increasing or decreasing at x — 6 meters?
8. The cost C{r) to construct a cylimdrical tank depends on the radius of the basce.
and is given by C(#) = 8000 4 I:wfjn:'_lﬂﬂ. where the first term represents the cost
-
of the base and the second term represents the cost of the walls.
(a)  Find the radius that minimizes the construction cost.
(k)  Calculate the minimum cost,
(¢} Determine the rate of change of the cost at r = 4 meters.



Vectors in Space

INTRODUCTION

In this unit, we will look into the rectangular coordinate system in three-dimensional
space and explore the fundamental mathematical operations involving vectors in space.
We will begin by understanding the dot product (or scalar product) and the cross product
(or vector product) of teo vectors and leamn about their geometric interpretation. Further,
we emphasize their practical applications, For example, we will se¢ how these concepls
can be used 1o calculate the area of a triangle and the area of a parallelogram, Finally, we
will explore the extensive use of vectors mn three-dimensional space, particularly m
physics, where they play an important role in determining forces, velocities, and other
essential physical quantities. For example, determining the work done by a constant force
when moving an object along a specified vector.

14.1 Vectors (Recall)

In previous classes, we learned aboul two [undamental quantines: scalars and veclors.
A sealar iz a quantity that has only magnitude or size, such as mass, time, density,
temperature, length, volume, speed work etc, On the other hand, a vector is a quangity
that has both magnitude and direction tor example displacement, veloeity, acceleration,
weight, force, momentum, electric and magnetic fields, ete.

Leometrically, a vector 13 represented as a divected line segment E‘Pu-'ith A as its initial
point and & as the terminal point.

In two=dimension (R7) a vector has components that can be represented by an ordered pair
[, ¥] ol real numbers. For the vector i = [x, v|, x and y represent the components ol w.

Addition of vectors: For any two vectors y = [x,, v, ] and ¥ = [x;, 15|, we have
Ery=lxan]tbasl=ix tx, 0 twl

Scalar Multiplication of a vector: For =[L _]»'l and ae R, we have
au=alx, y]=[ax. ay]

Equal Vectors: Two veclors o —I.::,, _F,I amd _l-_"—l.'f?_, ¥ ]ut' R are suid w be cijual
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if and only if they have the same components. That is,

B i
[.r,, y,] -—[x,. Ir,] if and only if x,=x, and v = y,and
we wIike ¥ =V T &
In other words, 1wo vector wand v are said 1o be equal, 1
A L

they have same magnitude and same direction.
Parallel Vectors: Two vectors are parallel if and only if they are non-zero scalar
muliiple of each other.

— —_— —k

For example, vectors — 48 and % A8 are parallel to A8 — BA.

Afl
Magnitude of a ¥ector

The magnitude (or norm or length) of a vector in 2D
represents the length of the vector from the origin to the  ¥7

point represented by the vector. For any vector o —[.r, _v]

_ Fix v
in R, we define the magnitude, as the distance of the H/ﬂ
point P{x, »)from the origin (.

Magnitude of Hfr" = |H.|’?1 = |E: = ..||'_a:: +y° X X

Now, we will learn some mathematical operations involving vectors in three-
dimensional space.

L

14.1.2 Rectangular Coordinate System in Space
In space a rectangular coordinate system is constructed
using three mutually orthogonal {perpendicular) axes,
which have origin as their common point of
mtersection. When sketching figures, we follow the | CTTRRRR
convention thal the posilive x-axis points lowards the !
reader, the positive p-axis to the right and the positive
z-axis points upwards.

These axes are also labeled in accordance with the right-

hand rule. The fingers of the right hand, pointing in the direction
of the positive x-axis, curled images toward the positive y-axis,
and the thumb will point in the direction of the positive z-axis.

A point ' in space has three coordinates, one along v-axis,

the second along v-axis and the third along z-axis. If the ._
Right hand mule
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¢ Fla b, )

distances along x-axis, y-axis and z-axis respectively are a, b

and ¢, then the point P is written with a unique triple of real

numbers as P {a, h, c) (see figure).

14.1.3 Concept of a Vector in Space

The set R* = {{x, v, z): x, », z € R} is called 3-dimensional

space, An element (x, v, z) of R® represents a point P(x, v, 2).

which is uniquely determined by its coordinates x, y and =,

Ciiven a vector ¢ In space, there exists a unique point Mix, v,

z) in space such that the vector (Tﬁi!-: equal to u (see figure),

Now each element (x, v, ) € R’ is associated with a unique

ordered triple (¥, v, 2z}, which represents the wvector
e

i :ﬂf’:[x, _;.-',zL

14.1.4 Fundamental Mathematical Operations for Vectors in Space

We define addition and scalar multiplication in & hy:

(1) Addition of vectors: For any two vectors y =[x, v, z] and v = [x, v, z'] we have
u+y=[x.pz]+x, V. |=[x+2 0+ ¥, 2+ 2]

{11} Scalar Multiplication of a vector: For o =[x, y, z] and o € R, we have
au = alx, v, z] = [ax, av, az]
The set of all ordered triples [x, v, z] of real numbers, together with the mules of addition
and scalar multiplication is called the set of vectors in B2, For the vector
u=|x, v, z], x, vand z are called the components of . The definition of vectors in &
states that vector addition and scalar multiplication are to be carried out also for vectors
in space just as for vectors in the plane, Similarly we define in R
(a) The negative of the vector u = [x, v, z] as —u = (—1)u =[ —x,— ¥, z]
(b) The difference of two vectors y=[x', ¥, 2] and w = [x", ¥", 2"] as
v—w=y+(-w) =[x —a", ) -y, 7 -]
{c) The zero vector as 0= [0, 0, 0]
{d)  Equality of two vectors: Tow veclors v =[x v\ z'] and w = [x". ¥", z"] are
equal that is v=w iland only ifx"=x", y'=y"and z"=z".
el Position Yector
For any point P_{;r ¥, z) in B, a vector u = [x, y, z] is represented by a directed
line segment OF, whose mital point 15 at origin. Such vectors are called
posilion vectors in &7, -
IF A(xy, w1, z0) and Bix", p", 2" ) are two points then position vector 45 is

r L r r r L
:]’E=1_J—[;: - W= 2=z ]
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14.1.5 Magnitude of a Vector in Space

We define the magmtude, norm, or length of & vector «n

space by the distance of the point Pix, v, z) from the origin .
0P =lu|= {7+ ¥ = 2

Example 1: For the vectors, u =[1, 2, 3, ¢ =[2, ], 3] and

w=[-1, 4, 0], find the following:

i) v-w (i) 2w (i) [l
(iv) [v—2w (v) [2u-—x+3w

Solution: 1} v+w=[2-1,1+4,3+-0]=[1, 5, 3]
() 2w=2[ 1,4,01=[2,8,0]

i) Ju=[1,- 23] =¥ 127 13 =TT 419=14
(iv) Je—2w =212, 1-83-0] - |[4,-73]
ST Y _ 6+ 9 9=T4
(v) |2u-v+3u=2[1,-2,3]-[2,1.3]+ 3[-1,4.0] =] 2.- 4.6]-[2,1.3] +[-3.12,0]

=[-3.7.3] = (2P + (7P 3) = O+ 4959 = 6T

14.1.6 Components of a Vector

As in plane, we introduce three special vectors: - [1, 0, 0],
j=[0,1.0]and & =[0.0,1]in &*

As magnitude of | = I + OF + 0 =1
magnitude of j = JOP+ 1 +0° =1 and
magnitude of k= JO° +0° + 1" =1, 80, i , J

and & are called unit vectors along x-axis, y-axis and z-axis respectively. Using the

definition of addition and scalar multiplication, the vector [x, v, 7] can he written as;
u=[x, . 2] =[x, 0,01+ [0, v, 0]+ [0, 0, 2]
=L 0. 0]+ {0, L 0]+ 20, 0, l)j=xi + vj+ zk
Thus, each vector [x, v, z] in & can be uniquely represented by xi — v + zk.
Unit Vector
A unit vector 1s defined as a vector whose magnitude is unity. In three-dimensional
space the unil veelor ol the veclor w = xi+ y/ + zk is wrillen as i {read as i hat) and

(1,10, 10)

v
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is defined by

% M x ; v _ z
=== i+ = i+ ke

“| J.::J +_1J"' +z \,{.ri _.._1,1' T -.,llj.'2 +J1-"? 20

In terms of unit vector £, 7, and &, the sum g + v ol two vectlors.

it =[.Jri, ¥ ,z,] and 1-';[1:, }-f],z:] is wrillen as:
u+v=[x+x.0+ 1.2+,
=0 X )i+ (0 + 0, \Lf"" (z,+2,)k
Example 2: Find the unit vector of w =2i+ 57— k.

Solution: Given vector k= 2i + 57— &, to find the unit vector
= |ul=J(2F +(5) + (=1} =430

The unit vector is:
i di+57-k

l . )
W Jmth)

Thus, u = %[{ i+ 55— #_L} is the required unit vector,
30 -

Example 3: If u=2(4374k&, v=4i+ 6542k and w=-6{-97-3k, then show

— I i

that « v and ware parallel to each other.
Solution:  u=4i+6j+2k=2(2i+3j+4)
»=2 . :
=» wand v are parallel vectors.
w=—6{-9/-3k
=-32i+3j+k) o w=—3u
—» u and w are parallel vectors,
Hence u, vand w are parallel to each other.
14.1.7 Properties of Vectors

Let u, v and w be vectors in the plane or in space and let @, b € &, then they have the
following properties:

(1) yty=y+tu {Commutative property)

(1) (w+vi+w=u+(pr+w [ Associative property)

() w+d=0 { Additive Identity)

vy ut+{-lju=u—u=0 { lnverse tor vector addibon)
(V) alv - wl = av baw { Distributive property)

iy alb) = (ol { Scalar multiplication )
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Proof: (i) Since for any two real numbers a. b €R, a + b= b + a, it follows that for
any two vectors y = [x, v, z] and ¥ = [, 1, ] in R®, where components of u and v
belong to R,

We have w+y =[xy zH[x. 2]

=lx+x,y+y,z+27
=[x +tx,¥y+y z+7] v oa+h=bh+a
=[x, ¥, 2] + [x, v 2]
=v+u
So, addition of vectors in B is commutative.

(ii) Since for any three real numbers a, b, ce R, (a +b) +c=a + (b + ), it follows
that for any three vectors, u = [x, v, z], ¥ = [x, ', 2'] and w = [x", »", "] in i
Where components of u, v and w belong o £

We have Erytw=k+x,ptyizte]+[x" . 2"

L o Rt R e T Bl S R e
=+ ta")y v+ Yyt +2"]]
Y Ha+bhte=a+(b+)
=y zl ¥R +a Yy Y2+ 2]
=ut+{v+w)
S0, addition of vectors in 8 is associative.
{11} Sinee tor any real number @ and ()
a + =g, it follows that
for any vectors, u = [x, v, 2], and 0 = [0, 0, 0], where 0 is the zero vector in R*,

We have gt 0=[xyz]+[0,0,0]
=[x+ 0, v+ 0 z+ 0]
=[x wnz]l=n

n+U=un

Thus 0 is the additive identity in R
{1v} Since [or any real number o, there exist —a such that
g+ti—gi=a—a=10 il [ollows that
for any vector, u = [x. y, z], there exists —u = [-x, —v, —z] in &
Such that g+ g)=[xpz]+ = =2]l=[x+{=xhLyp+{—=)z+{-=)]
=[x—x,y-y z-2]
= [0, 0,07 =0, where 0 is the additive identity
it {u)=0
Thus —u is the additive inverse of & in B*
The prools of the other parts are lefl as an exercise lor the students.
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14.1.8 Distance Between Two Points in Space
If OFand OF, are the position vectors of the

points B{x, ¥,z ) and £(x,.v,,z, )
The vector BE 15 given by
—F == "
RP=OR - OP =[x, ~ %,¥,~ 32— 2]

Distance between ) and P = |BA)|

2 i wd
- \j{xz _'tl} + rl-!'J_' _-5']} t {E! =)
This is called distance formula between two points P oand P, in B,
Example 4: Suppose a butterfly's Oight path passed through points (2, 4, 7) and
(6, 1.3). where each unit represents a meter. What is the magnitude of the displacement
the butterfly experienced in traveling between these two points?

Solution: Dhstance between two points in three-dimensional space is given by the
formula

d_"JE":? —n) Hy-n) tHz-5)
Substitute the coordinates of the given points mto the formula:
d=\{6-2) +(1-4) +(3-7)

d=J16+9+16 =41 = 6.40

The magnitude of the displacement the butterfly experienced in traveling between
these two points is approximately 6.40 metres.

14.1.9 Direction Angles and Direction Cosines of a Vector
Let :_'—(J}:'— xi+ v f+zk be anon-zero vector, let a, § and y
denote the angles formed between » and the unit coordinate
vectors 4, jand k respectively,

where O<agsx, O=f=<mand 0Ly<sx

(i) The angles e, & and » are called the direction
angles.

(i} I'he numbers cos a, cos f and cos y are called direction cosines of the
VECotor ;.
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Important Result
Prove that cos” & — cos” f +cos” 7 =1
Proof: Let

p=[x, ¥ 2]=xi4 vitzk

|| =yfx*+3'+2 =1

then |,; = |:— 2 ElJ is the unit vector in the director of the vector r = OF
F Fr
It can be visualized that the triangle A4 15 a right F
triangle with m ~ 4 =90".
Theretore, in night trangle 4P,
TR
cos o = — = —, stmilarly
oar
x o ; L,

cosfl==, cosy =
P

I B

The numbers cusa=§,mﬁ={anﬂ c:us;-’=§ are called the direction cosines
nfm;
cos” @ +cos” f +cos” ;r'—'rz +;.*j +i—w—%—1
¥ P F »
P EXERCISE 14.1 J
. Letu=3+2;-5k v=i-5j-kandw=-4i- j+ Tk. Find the following:
() w+lv+w (i) v—3w (i) 3y~ w

Find the magnitude of the vector v and write the direction cosines of v,

() v=3i-2j46k (i) v=-4i14j12 (i) v=-6i+8)

3. Find s sothat [2+(t=1)j+tkl=13
4.  Find a unit vector in the direction of v=—i{+4 j -84
5 If=2i+7-3k v=—i+47+2k and w=3i—2 7+ k&, Find a unit vecior parallel

o du—3v4 2w,
6. Find a vector whose
(1) magnitude is 5 and is parallel to 3r'+4_;'—

I
(if) magnitude is 7 and is parallel to —i+ j+ k.
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-

7. I u=xi+ _r + 3k, v=i4 yi- Jk and w=-2i- _3.__5 represent the sides of a
tnangle. Find the value of x and v,
8. The position vectors of the points A, B, Cand Dare =i+ 2j+ k. v=Ti+ 5+ 44k,
w=—i+k and =i+ 27+ 2k respectively. Show that .-].":l’rib. parallel to {_E;
9. We say that two vectors v and w n space are paralle] if there is a scalar ¢ such
that 1 = e¢w. The vectors point in the same direction if ¢ = 0and the vectors point
in the opposite direction if ¢ < 0
(a) Find two vectors of length 2 parallel to the vector v=2i— 47 + 4k
(b) Find the constant a so that the vectors v=i-37+4% and w=ai+ 9/ 12k
are parallel.
(c) Find a vector of length 5 in the direction opposite that of v =i—27+ 3k
(d) Find @ and b so that the vectors 3 — j+ 4% and ai+bj- 2% are parallel.
10. A spacecraft moves from pomnt (120, 240, —50) to point (130, 210, 80} mn
kilometers. What 1s the magnitude of the displacement vector in kilometers!
1. Find the divection cosines for the given vector:
() w=-6i+3j+2k (i) v=4i+2j-5k
{1ii) ;.;; where P(9.3,13) and O(1 1, 6.19).
12, Which of the following triple can be the direction angles of a single vector:
(1) 45°% 45° 60° (i) 307, 435°, 60° (1ii) 45°, 60°, 60°
Product of Two Vectors: Multiplication of two vectors is an important algebraic
operation in vector algebra. This algebraic operation plays a fundamental role for
understanding  various physical and mathematical Teal-life sitwation. Unlike the
multiplication of numbers, product of vector can be performed in two distinet ways.
The two primary types ol vector multplication are the dot product and the cross
product. The dot product s a scalar number while cross product 1s a veclor quantity.
14.2 Dot or Scalar Product
14.2.1 Dot or Scalar Product of Two Vectors and Its Geometrical Interpretation

We shall now consider products of two vectors that originated in the study of physics
and engineering. The concept of angle between two vectors is expressed in terms of a
scalar product of two vectors.
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Definition 1:  Let two non-zero vectors 1 and v, in the plane or in space, have some
initial point. The dot product of & and v, written as u- v, is defined by
v =|u||y|cosd

|2

[ Raw)

L
Where 8 in the angle between v and vand 0 =8 <n
Definition 2:
(a) I w=ai+hjand v=a,i+b, fare lwo non-zero vectors in the plane. The dot
product ©- v is defined hy:
u-v=aa,thh,
(b} Tfu= HI.!_'+|71|£ +ck and v=a,i _'b-‘if ~ ¢, k are two non-zero vectors in space.
The dot product u- vis defined by
u-v=aa,thb tec
m The dot product is also referred as the scalar product or the inner product.
Example 5: Prove that equivalence of following two definitions of dot product of two
WeClors:
(i) Ify =[x, ¥ ]and w= [x,, y,] are two veetors in the plane, then yw =x,x, + ¥, ¥,
(i1) If v and w are two non-zero vectors in the plane, then v- w= v | |w cos #, where
15 the angle between vand wand 0= 9 = &
Proof:  Letyand w be the sides of a triangle then the
third side opposite to the angle 8, has length ¥ W
By law of cosings,
ly—wlP =|pP+ -2 | |w cos @ (1)

it ¥ =[xy, ] and w =[x, ¥, ], then

v—w =[x —x, 3 —wl
S0, equation (1) becomes:
| =z, P4y = Pl a? 4 3 14 a4 93 | =2 v || w| cos ©
—2xx, —2yy,==2|v||w| cos &
=5 xx, + e =|p||wlcos 8= p-w
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14.2.2 Deduction of the Important Results
By applying the definition of dot product to unit vectors |, i and &, we have

(a) Zi=li|]i] cos0®=1 M ij= |f§|£ cos 9P =0)
3= || ]eoste=1 k= ||l cos 90 =0
k. k= |k||k|costr=1 k.i= |k||i| cos90° =0

(€} w.v= |y cosd
= |vjulcosi-6)
= [lu]cos(®)

I
1=
1=

—

= .y

1%

14.2.3 Projection of a Vector along Another Vector

In many physical applications, it 15 required to know “how much™ of a vector 15 applied
along a given direction. For this purpose, we find the projection of one vector along
the other vector,

Let 4 =u and 08 = v

Let 0 be the angle between them, such that 0 =0 = .
Draw BM | OA. Then OM is called the projection of

valong u.

From the figure : {',‘-':h‘ = ¢os 0, that is.
(3

m=|ﬁ:cnﬁﬂ=§g|cnﬁﬂ (1

Now, w.v= u||v|cost =|u|(|v|cod? ) =|u|{OM)
= (magnitude of u). {projection of v along u)
Thus, geometrically, the dot product ol lwo veelors represents the product ol the
magnitude of one veetor and the progection ot the other vector onto it In other words,
the dot product of two vectors shows how much one vector extends in the direction of
another.

.y

Now, by definition, cos ff =

(2)

lu| |

From (1) and (2), OM = |v|- =E =82

lu||v]| |u

1=
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s v
Projection of v along y = =—

]
Y ¥ ‘ u.¥
Similarly, projection of w along vy = ==
|¥

14.2.4 Properties of Dot Product
Let e, v and w be vectors and let ¢ be any real number, then

i) wov=0 = u=0o0r v=0

(i) noy=t.u (Commulative property)
{iii) v+ wl=nv+uaw (Distributive property)
(ivi  (cuky=clu.v) {c is scalar)

(v H.H’LH]

14.2.5 Dot Product of Vectors in terms of their components
Letg=aii +&1f + cikand v = gz + baf + ok be two non-zero vectors,
From distributive law we can write:
gl e {‘:"l'l."'bli"'t'l'm' 1:”:{.4'!:':1"-*'“1&}
= a|ﬂ:{£' ﬂl 'ﬂ|'b:{£' _.rl}'F ﬂ-:{?](!_;' E'} ! '{]rﬁ':ti' ‘_'}4 f}|£:'_g|:..£-' i)'l'bﬂ‘:{i' E}
+oa, (k- D+eb k- Dol B
= wv= au, + b+ oo, oiei= e =k
!‘£:£I£ :Enj =1

Hence the dot product of two vectors is the sum of the product of their corresponding
components,

Example 6:  Show that the components of a vector are the projections of that vector
along i, f and £ respectively.

Proof: Let v=ai+ bj+ ck,then

Projection of v along i = B lagi+bj+ck)i=a
iy -
g i - Bl : _ .
Projection of valong f====(ai+ bj+ck) j=b
J
Projection of v along k = Lk (ai+bj+ck)-k=c
k| "

Hence components a, b and ¢ of vector v= ai + bf + ¢k are projections of vector v

along §, j and & respectively.
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Example 7:  Prove that in any triangle AB8C
(i} al =0+ —2becos A (Cosine Law)
(11} a=hcos C+ecos B {Projection Law)
Proof:  Let the vectors g, b and ¢ be along the sides BC, CA and A8 of the triangle

ABC as shown in the figure,

(i) at+tb+c=0

= a=-(2+c)
Now a-a={b+e) b+

= =-‘_ btbrgtg-pterg

= -+ 2b-¢ (v b-c=c- B

= =|f:|-3—r.'3—2h:.‘cﬂs{1r Al

@ =@+ ot — 2o cos A A

(i) a+b+c=0

= g=—8—x¢

Take dot product with g

g @ ==ge gl
abcos(in ) accosim  B)
=-ab(-cos C)— ac{ cos B)

a =ghcos C+accos B

=
Example 8:
Proof:

a=bcosC+eccos B
Pruu: that; cos fr.! — 1= cos a cos § + sin & sin §

Tt (11 and GE be the unit vectors in the y

xy plane making angles a and § with the positive x=axis. A

Sothat £AOB=a—§

Now OA = cos @i + sing f
_.. z Crs

and OB =cos i + sin §

0A4- 08 =

[OA| |08 cos{e— ) = cos a cos § + sing sin §

(cos ari+sina j) (cos Bi+sin f ) -

cos(a M) = cos o cos i+ sing sin § (|04 =|g§| -1
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14.2.6 Orthogonality of Two Vectors

Definition: Two non-zero vectors u and v are perpendicular if and only if - v = 0.

i e T
Since angle berween 4 and v is = and cos = =
Az - b =1, for cvery veetor &, So,
the zero wector is reparded to be
perpendicular o every vectar,

1=

-
v=lu||v|cos =
2

0

u.

=
Il

Corollaries (i) If 0 =0 or x, the vectors # and v are collinear.

g-y=1

{ii) Ii"H=§,m:HH={] =

So, the vectors p and v are perpendicular or orthogonal.
Example 9: If u=3/— j—2k and v=i+ 27—k, then find u-v.

Solution: u-v =D+ (=102 + (-2H-1)=13
Example 10: If g=2{—4i+ 5k and y=4{—3i—4f_f, then prove that wand v are
orthogonal.
Solution: a- v=2}H + (- +EN-H=0
— uand v are perpendicular
Example 11: Find a scalar & so that the vectors 2i+e j+ 5k and 3i+ j + ek are
orthogonal.
Solution: Let u=2i+aj+5kand v=3i+ 8 £k
It is given that ¥ and v are orthogonal
uv =0
= {2£+n£+5g].{3g+i’-f1 k)
— i+ + 5 =10
& =1
14.2.7 Angle Between Two Vectors
The angle between two vectors i and v is determined from the definition of dot product,
that is

(a) uv=|u||v|cos 0, where 0 <8 = x
M.V
= cos B=——
|ul|¥
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(b Wu=ai+hj+ck and  v=a,i+b, j+c k. then

u-v = aa, + b, + o,

aa, + bb, +¢,c,
Jai +07 +cl Jai+bi v
Example 12: Find the angle between the vectors.
u=2—j+k and y=—i+j

cos b=

Solution: w.y = (2i— j+k)-(—i+ j+ 0K}
= (2}—1) +(=1}1) +{1}0) =3
and  Ju|=2i-j+k| =@ HED ) =6
[vl=l=i+ j+0k| =17+ (17 +(0) =42

v

Mow cosf=
| ]|y
= N
= s = ———=——
Jo2 2
ﬂzﬁf’z
i}

Example 13: Show that the vectors 2i = I+ ki 3i — 5k and 3 - 4__;' — 4k are the
sides of a right triangle. B
Proof: LetdB = 2i— j+ &k, BC={-3j -5k and
AR i A
—_—
Now AB+BC = (2i— j+ k) + (i -3/ - 5k) 4
~ 3i—4j— 4k= AC (third side)
— i —_— T
AB, BC and AC form a triangle AB8C.
Further we prove that A4B8C is a right triangle y > [ B
= Al BC 2i= f+ kY (E~3j - 38)
2D+ ENE3) +(1)(=5)=243-5=0
[ R —
AB L BC
Hence, A4#C 15 a right triangle.

C
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14.2.8 Work done By a Constant
Force
II'a constant loree £, applied w a body, acls
at an angle @ o the direction ol molion,
then the work done by #71s defined 1o be the
product of the component of § in the
direction of the displacement and the
distance that the body mowves.
In figure, a constant force F acting on a
body, displaces it from A to B.
Work done = (component of F along A45) {dlsp]acement}
= (Feus O)AB) = F-AB=F. d
Example 14:  The constant forces 2i + 57+ 0k and =i — 27 — k acting on a body,
displaced form position P[4, —3, —2) to (N6, 1, —3). Find the total work done.
Solution: Total force = (2 + 57 + 6k (—i — 27 — k)
= F=i+3j+3k
The displacement of the body =F-f_} ={6-4} +{(1+3)j + (-3+2)k
=5 d=2i+4 i k
Work done = F- d
=(i+3j+5k)(2U+4j-%)=2+12-5=9Nm

P EXERCISE 14.2 4

I.  Find the cosines of the angle # between 1 and v

(i) w=2+3j+k v=-i+2j+2k (i) u=5i-2j+k v=3i+4j+2k
(i) u=[-3.2, 5], v=[1.6,-2] (iv) u=[2,-3,1], v=[2.4.1]

Calculate the projection of @ along & and projection of b along g when:

() @=2i+3j-k b=i-2j+4k (i) a=4i-2j+3k b=i+j+k

]

L

Find a real number a so that the vectors # and v are perpendicular;
(1) u=arf+3j+i: 1:=:'—Ij—&' k {1} a.r=m'+2a,"—k v=f—aj+3-ir

4.  Find the number =z so that the tnangle with vertices A3, 0, =2, &0, 3,1 )and

C(l, 1, z)is a right triangle with right at <.
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5 If v is a vector for which v-i=0, ¢ Jj=0, v£=0,find »
6 (i} Show that the vectors 3i — Zi+i. [—3i+ S5k and 25+ i—ﬁ form a right
triangle.

(11)  Show that the sct of points P(4,— 1, 23, (XL3, =1yand R(-2, 4, 6) forma
right riangle.

Prowve that the cos{a + )= cosa cos 7 —sing sin 3

#. Prove that in any triangle 48 .

(i) h=ccosAd +acosC (i} c=acosB+ hcos A
(1) & =¢” +a’ —2cacos B (v} ¢ =a” +b" —2abcosC

9. Find the work done, if the point at which the constant force £ =2i+57+3k s
applicd to an objeet, mowves it from F{2,—3, 1) to B(7, 5, 3).

10. A particle, acted by constant forces F =3i+4j-3kand F,=i+4j-k, i3
displacement from A{2,1,3) to 8(5.4.4). Find the work done.

11. A particle is displaced from the point A(5,-5,-7) to the point B{6,2,-2).
Under the action of constant forces defined by 10i— j+ 11k, 4i+ 54+ 9% and
—2i + j —9% . Show that the total work done hy the force is 102 Nm.

12. A force of magnitude 6 units acting parallel to 4i+3j—kdisplace the point of

application from A{2,—1.3) to B{7.3.2). Find the work done.

14.3 Cross Product or Vector Product
14.3.1 The Cross Product or Vector Product of Two Vectors and its

Geometrical Interpretation
One of the key multiplication operations involving vectors in space is the cross prodduct.
Unlike the dot product, which results 15 a scalar, the eross product of two veetors yields
a vector guantity. The vector product ol two vectors is widely used in Physics,
particularly in fields, mechanics and electricity. It is only defined for vectors in space.
Let u and » be two non-zero vectors. The cross or vector product of g and v gives a
vector that is perpendicular to both the vectors w and v, written as i = v, is defined by

uxv={(ul v|smb)n
where 0 is the angle between the vectors, such that 0 = 0 = 7 and # is & unil vector
perpendicular to the plane of w and v with direction given by the right=hand rule.
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Right hand

Figure {a)

Figure {h)
Right hand rule

(1) [fthe fingers of the right hand point along the vector w and then curl towards

the vector v, then the thumb will give the direction of s which s g = v It is

shown in the figure (a).
(i1} In figure {(b). the right hand rule shows the direction of p * .
14.3.2 Parallel Vectors
If u and v are parallel vectors, then (6 = 0 = sin 0 = 0).

txy=ull v[sinBn

uxy=0  or e v = 0
And if u= v =10, then
Lither sin 0 =0 or |[w =10 or |u|l=0

(1) Ifsin # =0 = 0=0"or 1807, Which shows that the veclors u and v are

parallel,

(i) If u = 0 or v= 10, then since the zero vector has no specific direction, we adopt

the convention that the zero vector 15 parallel to every vector.

fern vector 15 both parallel and perpendicular to every wector. This apparent
contradiction will cause no trouhle, sinee the angle between two vectors 15 never applicd

when one of them 15 7o vector,

14.3.3 Derivation of Useful Results of Cross Products
By applying the definition of cross product o unit

s AN

vectors i, j and &, we have:

(a) i=i =|f||f|sin0fn =0 ],
ixi = |i |l Sinﬂ{.ﬂ=ﬂ :
kxk = |k||k|sin0°n =0 /
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(b)  ixj =|il|j|sin9Ck=4k
j j11&]sin90°i = i
kxi=|k||i]sin90° j = j

*
e T
i

(e)  wxy=|ul|v|sinbp=|p||u|sin(-H)r=—|v| u|snb
= i G
(d)  wxu=ullu|sin0n=0 K’#k
Mote: The cross product of i, i and & are written in the cvelie pattern. .:' \
The given figurs is helpful in remembering this pattern. i 4
14.3.4 Properties of Cross Product g
The cross product possesses the following propertics:
() uxp=0ilu=0or y=0 (i) uxy= vxu
(i) wx (v+p}=ux v+ux w (iv) wx (k)= (ku) =y = &k{uxy)
(vi uxu=0

The proofs of these properties are left as an exercise for the students.
14.3.5 Analvtical Expressions of # * v (Determinant formula for u = v)
Let u=ai+hj+ck and y=a,i+h, j+c,k, then

wx v=Aai+hj+ock)= (a,i+h j+ok)

= aya, (1% 1)+ aby (i x H+ae(i %k ) { by distnbulive property)
+ b (fxD)+hb(fx [)+he(fxk) | vixj=k=-jx],
s aykxi)+ebykx roetkxk) | jxk=i=—kx].
) _f£”!=£=_{3‘ E—.
ixi=jx j=kxk=0

=ahk ac,j bak+hoitew,j obi

= wuxy={he, —gh)i—(ae, —ca,)j+ (ah, — ha, )k (i}
The expression of 3 * 3 determinant
i k&
= ]-|:|I'| b o|={he, —ch i —(aqc, — ca, ]_i' + (ah, — ha, )k
la, B e

The terms on R.H.S of equation (i) are the same as the terms in the expansion of the
above determinant,
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Hence ux v= |g,

(L

-l L
L8
—
-
=
o

i

IF‘
LE)

which is known as determinant formula Tor w = v
The expression on B.H.S. of eguation {111 is not an actual determinanl, sinee ity entries ane
not all scalars. Tt is simply a way of remembering the complicated expression on BLH.S of
equation (i)
Example 15: Find a vector perpendicular 1o each of the vectors.
ga=2i-j+k and b=4i+2j -}

Solution: A vector perpendicular to hoth the vectors g and iz a = b,
Ik

-1 1|=—i+6j+8k

2 -l

B b2 i~

Verification:

arax b={2— j+ k) (=i + 6] + 8k) = (2}-D+(-106}+(1)8) = 0

and bax b=(d+2j — k) (—i+6j +8L) = ()-1}+(2)(6)=(-1)}8) =0

Hence g = b is perpendicular to both the vectors g and b.
14.3.6 Angle Between T'wo Vectors (Cross Product)
The angle between two vectors g and b 15 determined from the detiition of cross
product.
If 0 is the angle between a and b, then |g ® -’_.'r| =|a||b|sind
laxb|
allhl
Example 16: If @ =4i+3j +kand b=2f j +2k& . Find a unit vector perpendicular

= sin =

to both g and A. Also find the sine of the angle between the veelors g and b.

R
Solution: axb=4 3 1=T7{-6j-10k
2 -1 2

and  ax bl = J(7) + (=6) +(~10) =185

: : axh Ti—bj-10k
A unit veetor perpendiculur w g and b = —— =

|a = b IR
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Now |a| = (4 + (3 + (1) =26
B = (20 + 17+ 2) =3
I1'® is the angle between g and b, then |a = b= a|| & sin0

|axh| 185

lal|b| 326

Example IT I"'rowethalsm (e + ) = sin e cos # + cos o sin 0

Proof: Let Od and DB be unit vectors in the xp-plane making angles & and —f with

the positive x-axis respectively.,
So that msAOB =a + f§

== sin 0=

Now {J;i = CcOs @i+ sina J 2
and Eé= cos (—6) + sin(- &) 4
= cos fi- sin i/
DB‘ x Od = (cos ffi—sin 6 /)» (cosai +sing i} a | .

O _f
A

—_— — .
= OB| |04 sinfer + Sk =|cos i —sinf 0

cos =m0

=} sin(ex + = (sina cos fi+cos o sin &
sinfa + ) =sine cos ff+cos @ sin B
meplu 18: 1Inany triangle ABC, prove that

B e oy 8 {Law of Sines)

sind sinf  snC
Proof:  Suppose vectors g, b and ¢ are along the sides BC, CA4 and 4B respectively

of the triangle ABC.
athic=0
= bte=—a i)
Take cross product with ¢
bxodoxe=—axe

bxg=gxg (rexe=0)

= |bxc|=|cxal >
| B¢ sinlx — d)=|c||a|sif —B)
= besind=casmfb — bsind=agszms
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1] a

= {ii)
sinf#  sin 4
Similarly, by taking cross product of (1) with b, we have
tf [
= {ii1)

sind  sindC
h e

i
From (11) and (111}, we get = =
sind sinB sinC

Example 19: If 8 =2~ j+k and v=4i+2 j-k . find by determinant formula

() u= u (i) wxy (i) v

Solution: ¥=2—j+k and v=4i+2j-k

By determinant formula

i Sk
(1) uxp=2 =1 1{=0 (= Two rows are same)
2 =1 1
I =k
() wxy=2 -1 1|=(1-2)i-(-2-4)j+(@+Dk=—i+6j+8k
4 2 =]

A
(i) wvxw=[4 2 —1|=(2-1}i-(4+2)j+(—-4-A)k=i-6;—8k
21
14.3.7 Real World Applications on Cross or Vector Product
{a) Area of Parallelogram
If & and v are two non-zero vectors and # is “

the angle between u and v, then ji_:|and | El

Fid

represent the length of the adjacent sides of
a parallelogram. (see figure). We know that:
Area of parallelogram = Base » Height

= (Base) (/)= |u/|v|sin8

=l

=
=¥

- Arca of parallclogram = |E " 1,_,-|
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{b} Area of Triangle
From figure it is clear that

LY
Arca ol triangle = 1— {Arca of parallelogram)

.
*

Arca of triangle = ; i | i

1t-

where i and v are vectors along two adjacent sides of the triangle.

Example 20: Find area of the parallelogram whose vertices are
P(0, 0, 0%, O(—1, 2, 4), R(2, -1, 4) and S(1, 1, 8).
Solution: Area of parallelogram = |PO = PR
s o
Where IPQI 'm::l |77 are o adi’lcent sides of the parallelogram

F‘{_J {'.-i'{.l' UP —0i+(2-0)) +{4-0)%= —a+2_|'+-:1.fc
PR - OR—-0P - 20+ 10} + (4 -0 =2{—]+ 4k
i
Now  PQOx PR =|-1 2 4 =(B+4)~(—4-8)j+(1-4k
e )
1264123k
Area of parallelogram = |PQ - E |I 200125 3&|

= 144 + 144 4+ 9 = /297 square units
Example 21: Find the area of the triangle with vertices A(1,—1L1) #2.1, Hyand
C{=1,1,2). Also find a unit vector perpendicular to the plane of triangle ABC.
R — —% 3 .
Solution: AB =0B-04=02-1)+{1-1))] +(-1-1)}k=§ -2/-2&k
— — — _I & 1
AC=0C-0A=(-1 - DE+{1+1}j + (2 1k=-2+2[+k
k
2= (24— (1= D)+ (2+ Dk =6i+3j +6k
|
The area of the parallelogram with adjacent sides 48| and [AC| and is given by

ExEﬁ=im+3;+m|=d3ﬁ+9+3ﬁ=¢’tﬁ=9

Area of triangle = —|_.4,E'x AC| 'ﬁf_ 3j+6k|= %squar& units

{

AR AC=| 1
2

A% R o R

A unit veclor | 1o the plane ABC = % - —ll[fi£'+ 3j+ Ei&}——li{+j+2f_f}
3

ABx AC| 9




Vectors in Space <E>

ic) Moment of Force
Letl a force L‘[Fﬁ:'} act at a point P as shown in the figure, then
moment of £ about
= Product of force - and perpendicular (N the direction of o
~ (POWONY 1) — (POYOP) sin 9 (1)
~OPx PO=¢x F
Example 22: Find the ﬂment about the point M (-2, 4, &) of
the force represented by AF, where coordinates of points 4 and & are (1, 2, -3) and
(3, 2) reapm:tne]v

Solution: AB=08-0d = (3-1i+(-4-2)j+(2+3k=24-6j+5k
MA=(1+2)i+(2-4)+(-3+6)k =3i-2j+ 3k
Moment of AB about M(_2, 4,—6) = x F = MA x AB

I

|
(]
e

= (~10+18)i—(15-6) j+{~18+ 41k
= &i-9/—14k

Magnitude of the moment —J{E} +{—9) +{-14) =434

¥V EXERCISE 14. 3J

. Compute the cross product axband 4= o Check your answer by showing that

cach a and b are perpendicular to g« pand px o
(i) a=2i+j-k b=i-j+k (i) a=i+3j+2k b=2i-j+k
(i) a=2-2j+k h=-i+j+3k  (iv) a=-4i+j-2k H=2+j+k

.

2. Find a unit vector perpendicular 1o the plane containing ¢ and 4. Also [ind sine
of the angle between then::

(i) a=i+6j-3k b=2i+ Bk (i) a=-i-j-& b=2-3j+4k
(iiiy a=i+j+k b=i-Fk (iv) a=5i+ -3k b=-2i+4j+k

3. Find the area of the tnangle, formed by the points P, ( and £

() P23, 5:,2,00;R4.1,2) (i) P0,0, D2, 1,2):R 1,3.2)
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3]

16,

Find the area of a parallelogram, whose vertices are;

(iy A0,0,0);8(1,2,3); C2,-1,1); M-1,3,2)

(i) A(1,1,1);:8(4,2,3); C(5.6,7);IN2, 5. 5)

() A4, 3. 6);8(1,3,2); C{ 2.0,1); 1,2, 5)

If the cross product of the vectors # = Ti—4+ 5k and v=ai-bj+ 3K is zero, then
find the values of @ and 5,

Which vectors, if any, are perpendicular or parallel

() u=5i—j+kiv=j-5k;w=—15i+3j-3k

< . . _— T, . T
() w=i+2j-kiv=—i+j+kw=—"ri-mj+ —z_k
Use the definition of cross product, for any vectors i, v, w and scalar &, prove that
{13 = (—_ =1} {Il} M p=— gy

(i) s ()= (hupe =k ) (V) wx (vt wh=(u= ) + (e w)
Prove that: ax{b+cl+ha{cralroexfa+rbi=0D
If d+ 4+ =10, then prove that axfr=hxoe=cng
Prove that: sinf{ e — 8 )=sine cos f +cos e sin
Ifa=b=0andga- h=1, what conclusion can be drawn about g or h7

Use the definition of cross product, prove that for any vectors ¥ and v

(i + v} (@ —v) = —2ux v}

. . - - ET
Find the moment about the point M{1, =3, 3) of the force represented by A5 |
where the coordinates of points A4, 3, —1) and B{—1, 3, 7} are given.

=
A force FF=6i+4;—4k is applied ar the point 4(1.—1,2). Find the moment of

the force about the point &(3,—2.3).

Give a force F=2i+ j=3 K acting at a point 4(1,—2,1). Find the moment of #
about the point 8(2,0,—-2).
A force F==2i+ 3 Kis applied at £{-1,-3, 2). Find its moment about the

point ¢x4, 2. 2).
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14.4 Scalar Triple Product
14.4.1 Scalar Iriple Product of Vectors
The scalar triple product is a key concept in vector calculus with wide-ranging
applications covering various fields. In three-dimensional space, it provides a
significant role in calculating the volume of geometric shapes such as parallelepipeds
and tetrahedrons, defined by three vectors, which we will learn later in this chapter.
Additionally, it plays as a vital tool for determining the coplanarity of wvectors,
providing a condition to verify whether three vectors lie within the same plane.
There are two types of triple product of vectors:
{a) Scalar Triple Product: - (v * u)
(b) Vector Tople Product: o % (v % w)
In this section we shall study the scalar triple product only.
Secalar Triple Product
Let g, v and w be three non-zero vectors
The scalar triple product of vector u, v and w is defined by
wlv=w) or wi{wxu) or w(uxy)

The scalar triple product - (v = 15 Writien as

w-{ve wy=[u v w]
14.4.2 The YVolume of the Parallelepiped
The triple scalar product (u = v) - w
represents the volume of the parallelepiped

having g, v and w as its conterminous edges. \

As il 1s seen from the formula that: height = [w| cos HI %\lf-‘;"
(% ¥)-w=|uxv||w|cos @ s ,.f.;,;a&"f}

Hence, (i} |u= v= area of the r.-‘f"lﬁn

parallelogram with two adjacent sides g and v,
(ii) |w|ecos 8- height of the parallelepiped

(1% v)-w= |uwxv||wlcos 0 =(Arca of Parallelogram) (height)

= Yolume of the parallelepiped
Similarly, be taking the base plane formed by v and w, we have
The volume of the parallelepiped = (v = w)- u

And by taking the base plane formed by w and u, we have

The volume of the parallelepiped = (w = u)- v
So, we have: (u > ). w = (x> w)-u = (> u)- v
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14.4.3 The Volume of the Tetrahedron
Volume of the terrahedron ABCD —% (area of A4BCHheight

of £ above the place ABC)

| —

1
x.z.lﬁxll}”

il

=— [Arca of parallelogram with 45 and AC as adjacent sides) (/1)

| et Noter
=— {Volume of the parallelepiped with u, v, w a5 edges)

(=

3 As volume i3 always positive
1 1 a0 ignome negative sign if
Thus, Volume = E (o= v)-w= E L2 ¥ W] {1 % ¥)- W i5 nogative.

14.4.4 Scalar Triple Product of Vectors in Terms of Components
Letu=aithj+ck, v=a,ith jtckand w=ai+bhjt+ck

PoJ ok
Mow, vxw=a, b ¢
;. Uy E,
— vrow=(he, —be - (a0, —oye, ) f+(auh —ah )k

v w) = abe, —be) )b lae, —ae, )+ e (ah; —ah,)

a bog
=  wlxw=a b o
a b q

Which is called the determinant formula for scalar triple product of u, v and w in
component form.
Example 23: Prove that dot and cross product are inter changeable in sealar triple
product.
Solution: Consider ¥=ai+h j+ek, v=a,i+h j+c,k and w=ai+h j+ck
are the arbitrary vectors.
The determinant formula for scalar triple product of vectors g, y and w is given by:

a b ¢
we(vxwl=la, b ¢

a, boog
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i, h o

=—|ag, b ¢ Interchanging R, and R,

=l B g Interchanging R, and R,
)

=we () =(uxy)-w (@ b=bT

Hence, u-(vx wh=(u=v) w

Thus, the position of dot and cross can be interchanged in scalar triple product.

Example 24: Assuming i, jand & are unit vectors in a cartesian coordinate system.

Prove that i f‘l&:ir&-‘ﬁ i=k I:ﬁi

Solution: Given {, jand & are unit vector,
So. we can write {=i+ 07+ 0k j=0+ j+0k k=0i+ 0j+Kthen determinant

form for scalar triple product of unit vectors £ fand & can be written as:

I o
Poixk=[0 1 0f=1(1-0)-0(0-1)+0(0-0)=1
00 1
010 00l
jokxi=[0 0 1/=00-0)-1(0-1)+00-0)=land k.ix j=[I 0 0 =I
I (3 b 0 1 0

Therefore i. LH-C k= kxi=k.ix |
Example 25:  Find the volume of the parallelepiped determined by
u=i+2j-k, v=i-2j+3%k w=i-Tj-4k

1 2 =1
Salution: Yolume of the parallelepiped = u.v % &'=-%1 = 3
T

= Volume = 1(8+21) 2{4 3 1{ 7+2)=29+14+5
= 445 cubic units
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Example 26: Find the volume of the tetrahedron whose vertices are A(2,
B(3,2, %, C(2, 1, 4) and I3, 3, 0).

Solution: AB = 08 — 04 = (3-i+(2-1)j+(9-8k =i+ j+k

AC=0C 04=Q2-2i+(1-1)j+(4-8)k =0i-0j-4k
AD =00 Od= {+3—2]:’+{3—1}' +(0-%_ =i+2j-Bk

— ]

Yolume of the tetrahedron = [.aiﬂ AC A

g .
—iﬁn 0 —LI{H+H]—I{H+4}—[[H—[}} —[H 4] —Luhh:unlt‘vi
i 3 w8

14.4.5 Coplanar Vectors and Condition for Coplanarity of Three
Vectors

Yectors are coplanar if they lie in the same plane or can be

combined in the same plane.

Consider the three coplanar vectors u,v and win a plane as

shown in a figure.

The cross product v= w gives a vector that is perpendicular

to hoth the vectors vand w, AS v und ware coplanar, so

v wis dlso perpendicular to g
Thus, the dot product of uand v wis zero. 1.e.,
e lvxw)e O 0 I vectors g and b are perpodicular then a-bh =0
Thus, we conclude that if the three vectors g,
triple product is zero.
Properties of triple scalar product
I. Tfu, v and w are coplanar, then the volume of the parallelepiped so formed is zero
that is (& % ¥}- w = 0 and hence the vectors w, v, w are coplanar = (= v)- w10
2. Ilany two veclors ol scalar triple product are equal, then its value is gero ie.,
[ww]=[uyy]=|uww]=0
Example 27: Prove that four points
A3, 5, -4, Bi—1,1, 1), C(-1, 2, 2) and (-3, 4, —5) are coplanar.

Proof:  AB=OB— 04 = (—1+3)i+(1-8)j+(1+4)k = 2i-4; - 5k
AC=0C — OA = (<14 3)i+(2—5)j+ Q+ Mk = 26— 3j+ 6k
AD - OD - OA — (—3+3)i+(4-5)j+( 5+ 4k =0i— j—k=j &

¢ and woare coplanar then their sealar

Volume of the parallelepiped formed T}.!fr .E: and AD is
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i 2 =4 5
[AB AC AD] =12 -3 6|=2(3+6)+4-2-0)+5-2-0)
0 =1 =1
=18-8-10=0

As the volume is zero, so the points 4, 8, C and D are coplaner.
Example 28: Find the value of @, so that i+ j, i+ j+3k and 2{+ -2k are
coplanar.
Solution: Letu= ai+ j+ 0k y=i+£+3£_z and E=2;'—ir'—?.£be three given
vectors. Scalar triple product of given vectors is
a 1 0

[uvw]=|1 | 3|l=a-2-N-1{-2-6)+N1-2)=—F +8

21 =2

The vectors will be coplanar if -Sa+ 8=0 = « =%

14.4.6 Applications of Vectors in Real World

Example 29: A plumber exerts a force of M) pounds along the negative y-axis on a
lever connectad to a machine. The pivot point of the Tever is at the origin (0, 0, 0, and
the force is applied at the point (1.2 ft. 0.5 ft. 0 ft). Determine the torque produced by
this force about the pivot point.

Solutien: The position vector r from the ongin  [CEACaaaal  Torque guantifies the

to the point (1.2, (.5, 0) is given by mmm’mm:"? it by ﬂiﬁ

r=12i+ ﬂji + 0k the eross product of the position veetor

— ) {which exierds rom the pivat peant e the
The force F is exerted downward along negative  point where the force is applied) asd the force

v-axis with a magnimde of 30 pounds is vector & itsell. - i
F=0i—30;+0k

Torque 1 produced by the force = = F

Using determinant formula of cross product

S R
r=[1.2 05 0
0 =30 0
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= 0i—0;-36k
= —36k pound-fect

Thus, the torgue is 36 feet-pounds in the negative  z-direction

Example 30: During a building construction, a crane exerts a force to pull a concrete
block, represented by the vector F = [4300, 3300, 2140] Newton, Each component
corresponds to the force exerted along the x, y, and z axes, respectively. What is the
magnitude of this foree?

Solution: Using the formula for the magnitude of a vector in three-dimensional space

|| =y + 7 + 27 = 45007 + 33007 + 2140°

= JEUES{HJUU+ LOEDOO00 + 4579600 = \I@ET]‘JEIUU =5976.59
The magnitude of the foree exerted by the crane is approximately 3976.59 Newton.
Example 31: The components of w=300¢ + 2307 +180& represent the respective

number of jackets, shoes, and handbags sold at a store. The components of
v=3500i + 4200 + 6840k represent the respective prices (in rupees) per unit for

each product. Find - v and explain what the result tells us in real life.

Solution: The dot productof w and v =n- v
=(3004 + 250 +180k)-( 35000 + 4200, + 6840k )
= 1,050,000 + 1,050,000 + 1,231,200 = 3,331,200

The result w-v= 3,331,200 tells us that total revenue generated from selling all the
three product is Rs, 3,331,200,

P EXERCISE 14.4 4
. Find the volume of parallelepiped for which the given vectors are three edpges

(i) w=3i+2k; v=i+2j+k: w=—j+3k

(i) w=i-dj-k: v=i-j-2k; w=2-3j+k
(i) w=i-2j+3k; w=2-j-k; w=j+
2. Verify that a-bxe=5

a=3i-j+5ki b=4i+3]-2k and c=20+5]+k
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Prove that the vectors § L'_,." 3k, - 204 'i,r 4k and i -3 )+ 5k are coplanar.

L

4.  Find the constant @ such thal the vectors are coplanar.
() i-j+k, i-2j-3kand 3ji-aj+3k
(i) i-20 -k, i-2j+2kand @i-2j+k
5. Prove that the points whose position vectors are A(—6i4+374+28).
B(3i—-2i+4k), Cl5i+7j+3k), D(—13i+17j—k) are coplanar.
6. (a) Find the value of :
() 2ix2jk (i) 3jkxi (iii) [k i /] (iv) [iik]
(b) Prove that u-(vx w)+v-(ws 1)+ w- (ux v) = 3u- (vx w)
7. Find volume of tetrahedron with the vertices
(i 52, 5,21 (L2,1) and (5,5,6)
(i) (2. 1,8), (3,29, (2.1.4) and (33, 10)
Prove that the points whose position vectors are A(3i+27—4&). B(i—27+1k),

Ci6i+4 j—2k), D9 +6j—3k) are coplanar,

=0

9, Prove that for any three non-zero vector ¢, v and w
(w+ [+ wix(w+u)] = 2fu v ]
10, Consider a parallelepiped determined by the vector u = 2i+4 -3k,
v=35—3j+6k and w=4i—7j—2L.If the base of the parallelepiped is
define by the vectors i and v then find the height of the parallelepiped.
11. A mechanic applies a force of 50 pounds along the positive x-axis on a wrench
connected o a bolt. The pivot point of the wrench is at the origin (0, 0, 0), and

the force is applied at the point (0 11, 2 fi, 3 f). Determine the torque produced
by this force about the pivol point.

A drone flics from point (1, 2, 5) to point {4, &, 9), with each unit representing a
meter. What 15 the magmitude of the displacement the drone experienced durnng
this flight*

13. The vector u=50i+75 ir‘-ua:?.i shows how many belis, pants, and shirts were
sold at a store, The vector w= 1501 1 35|'H']i 30004 shows the price (in rupees)
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of each item. Find u- w and explain what the result tells us in real life.

14. A force F = (20, -10, 30) N is applied at a point A2, =1, 4) in 3D space. The
pivot poant 15 at M1, 2, =3) . Caleulate the torque produced by this force about
the pivot point M.

5. An electric shop sells three tvpes of appliances: Fans, Heaters, and Ovens. The
mionthly sales quantities are 500 units of Fans, 300 units of Heaters and 200 units
of Ovens. The profit per unit for each appliance is Rs 500 for Fans, Rs 400 for
Heaters, and Rs 2,000 for Ovens.

{a} Represent the monthly sales quantities and the profit per unit as vectors,
(b) Calculate the total monthly profit using vector operations.
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(b (i) /=3 (i) +3 iy N2 =1 (iv) V22" +9

S kY, (k)Y % .
2. (i 4 [iiy —cusl\ur— smt—| Ginyd” + 3ah+ h+ 30 + 2a
R 50 I 0
sinh P’ 4 :
v i 1 ) A= @ C=2frd © S-ev¥
frcosacos(a+ ) 16

4. (iyDomaing = {—=, =), Range g=(—w,x)
(i} Domain g =[-2,=),Range g=[0,%)
{iiiy Domain g = (-, %), Range g=[0,=)
{iv) Domain g = (—=,20), Range o= (—»,x)
{v) Domain g = (—c, @), Range g= (—=. 2} [7,2)
5, a=2,0= 2 6 Domaing = {—c, 303,20}, Range & (—oo,—1)ui(=1,52)
.0y (a) 3w (b} 175 m (c) 101w (ii) ¥ =12 sec
8. (i) Domain f = (—sc,=),Range = (—2,x)

(i) Yes, the function is one-to-ong, because equal cuputs implies equal inputs.
(111) ¥es, the function is onto when the codomain 15 all real numbers,

9.(iy  Domain = R-{-1},Range = R— {2} (i) Fix)isnotonto, 11.g(x}is surjective,
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Q.201)
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2
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.t"_ﬁ.l_,_E_ﬂ_l_f:[b LT

64 8 4 £ X x AM

1. (i)

A L] ] T
(i) 1280 — 4482°x + 672a°x" — 560 + 280 — — g4l 40— L
i i ] i
* oha 15 15y Gr' ?
T e BN, T PR L .. IR R T T T (i) 16.64966416 (i)
a b b ] e a’

QG20 2I96R016  {iv) HE410] I () 2t 4+ A0t - Ryt (i) 724
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4. (i) 16+ 32x— Bx® —dibe? + 2% + 2007 — 2% — A7+ (i) 1 —dr + 1007 — a4 19 — 16t + 10t

¥ ; i : 3 . . — 13309
—dx'+f B (V112060 (i) - a0 1R LlltbdtlﬁlﬂT (v 62 ¥y b (i) 2
o
132! —15309 45 T
i ML e T e {iii} 33
{n!] b 4
EXERCISE 8.3
l 2oy 14 4 ) = " 2 q 2T - s
1. (iy]l——x+—x ——x +..izvalid if |.'L|f:.'| (i) 2——x— —x"——x" +... is valid if
b b3 | 4 64 ald
1

: 4 ; [ : X ‘ A
i <l=lrla— (i)l -x+27 -2+ Lisvalidif (¥ <1 (iv) ] +2c+ E.-.-;-f 2ot . is valid
o

1
if |}:| < E 2. 9930 approximate (Coreect Lo theee decimal places) (i) LOLD approximale

{Correct (o three decimal places)  (iid) 0331 approximare (Correct 10 three decimal places)
(iv 30935 approximate {Correct o three decimal places)

3
3 G-1"=20  (ildn T T
5

EXERCISE 8.4
6. () 0U36TY (Approximately) {11} LRI S T. 56 B, Rz 12,016,000
4. 63 items T Rs, 2028 2000 11, 28 matches 13. 180, 160 tems

EXERCISE 9.1

L. (i) Quotient = 3x +2 . Remainder =4  (ii) Quotient = x* — 14y + 25 |
Remainder =54 (iii)  Quotient=x"+x"-2x+1 . Remainder= 18
(iv)Quotient = Sx* — 3xr— 18 , Remainder= 12x+ 71  (v) Quotient = 3x% + 4x —

3, Remainder=-25x+9 2. (i) 20 (ii) 10 (iii)5 (iv)91 (v} 10

3. (i) r+1lisafactorof ¥ —1 (ii)x—2isafactorof X —5x+6

(iiike + 1 is nota factorof X + x* +x — 3 (iv)x — 2isafactorof 2’ +x* — Tx + 2
(ivlx—3 s nota factor of x' -3 + " —x + 1

4 (D) (x=2Hx=1x+3) ({){x+ 4 c—6Wx+2)

(i 20 x+ N x+ 1) (2x+3)

5. Quotient=x* =3 —x+ 1, Remainder =1 6. p=2q=—1 7. k=18. k=8

] —1
0, P=T_.L'|=T Mh.a=-8,h=-16
Exercise 9.2
1. 26.25% 2. x=-—11savahd point 3. x=12 lics om the curve
4. x+ 1isnota factor of pix) 5. CRC =20 6. (1) Remamder = 1
(i1} System response innot zero whenxy =1 7. 45

H. Hystem respomse in not zomo when ¢= 4 9%, Reccived message 15 not orror-froe, beoause remainder
15 nom=zero, W Code ward 15 not valid, beesuse x — 1is not a tactor of Cx),
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EXERCISE 1.1

3 1 -1 . .
1. i) 1{; ii)—1 i} 2 vy -2 v ﬁ i) & 2 0) —cos 1274i) —sin 12* dii) cos 27"
pv)lan 33 vd sin 157 wid o sin 39Y wii) col 33Y 0 vi) o osin2]T 0 ) sin 207
Excrcise 10.2
U T RSN S SN £ P I 1-43 L1443
] z‘slré i) 3‘\"?: 1ii} "lej_'_] iv} 2_\&* Wl Eﬁ.lr’."‘ wil : _ﬁ
Sh P 33 s6 16 &3

ol
55 W s Wz WM G Vg Vg

9. 1) vl

The terminul wrmes of angles of measure and o — Fond @ F are in 007 and T guedrancs

respeciively.
A3 b 3 4
10. ) E—ﬁ i) %% 14 1) 13 sinfer + 20, Lun#'—ﬁ ity 5 sin (24 @, lung =3

Psini@ oy iang==1 W TF dr@rolEig et W JTan(gse)
5

p =1 vi) 3dsingd+), tang = Tq

EXERCISE 10.3

: 120 119 B30 24 T 24
= e L T ok s I P L — — g o
1. i) sim 2ax T e 169 tam 2ex 19 1) s 2o 35 cos 2er a3 - tam 2 =

e, 1+ & —
4 sint g 2=tcos20tcosdd o ) 5in1£2=3'l-|:—i

5 3 Cuos i 1} 5in 54° =
5+1 [0+ 245 10— 25
:._J'_d; cos 367 Qi) cos 187 g sim T2 iv) cos 347 g sin 36°

EXERCISE 10.4
1. 1) sind@+sin 2@ i) sin 38 —sn 26 1) %Eﬁi'ﬂ TE+sm 38 1wy cos 38 —cos 99
w) % (sin 2x — sin 2v) ‘.-'i:l';' {eos 4+ cos 607 vil) % (cos 34" — cos 387) viii) El (cos WY — cos 2x)
G 3

2. 1) Zsindfcosd Q) 2 cos 6fsin 26 1) EunsT COs 5 vl =2 sin 4# sin 3¢

12 cos 30 cos 18" wi) 2 sinxocos 300
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Exercise 11.1

1. {1} even ity netther even norodd  (101) even (1) netther even nor odd — (v) odd

&
(vi) odd {v111 even (viit) even 2. (i) =

qa
~ i) (i) g (992 1) 20 (i) S (vid)

e
W cand o 4 ;
T [wiiil = (ixh 30 (x) = (xil 2

Exercise 11.2

L (i) i}
., l'\- b b,
R S R T TR fiv) /
(v) {¥i) f

2, (i) - = (i)

Exercise 11.3

i -1 b 1
I. (i) Max=4, Min=2 (i) Max=4, Min=2 (iii) Max= ot Min= ? (iv) Max= E ; Mln—E

| | |
(v) Max=4, Min==2 [v1) Max=3, Min=—1 [vi1] Mux=§, Min= 1_"-' [v11] \-1:51:=1,

Min=— {ix}) Mux—— . Min= — 2. (u} muximum lemperalure= 21.5 | minimum

temperature= 8.5 (b) Temperature at @ AM =8.89" 3, distance=36.78m 4. height=30.92m
S

5. &) Me)=-30cos Er |+ 3 by ohfeer (o) 63 72fcet 6. {a) 27w (b 03m
E !

-

3 A"
ic) %wmd {dy 0.05second 7. (a) hi0 =28 !ﬂmai%rl ihl 28 feet

(e} 3T HTsand 82,13s K. {a) e%e8F  (b) Ohr ey T2E W (a) O30

(k) ROMIO
T ——
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EXERCISE 12.1

L (i) 2 ()0 (i) ;i(i»,-; 20 10 (D5 (i) 4 (V0 (V0 (vi) '—:

b | —

12 1 1 l
A 2 (upd i) = (v) 0 v 2 fwid ] (wii) ﬁ [vili) E

) L™ 4 () S5 () = @0 (v 1 o 2 (il (vi) 2 (0
m 180 b

(xy 1 (xi)

[ - ]

a ii s I . 1 a
i -= 5 (D € (i) e i) = (iv) e (v) & (vi)e
(vii) P R TTH) z (ix}) (xp 1 (xi) |
& ¢
EXERCISE 12.2
. (i) =2 (wip Oy 0 2. (1) s discontinuous at x =2 (1) (s discontinuous at v = |
X)) s discontinoows at =2 (i) Sis discontinuous al v = =2 4, c=-]

5 (i) m=1l,n=3 (i} w=4 &=E T fx)is discontinuous at v = 1

EXERCISE 12.3
.0 2 10000010 30 500 4. (i) 0 iy 0 50 (i) e (i) R2.44
. yes T. (i) 16.18% [y 13494 8 yos

-

. .. e 12 " | ’ B 1 1
)2 and () 5 (iv) 0 (v) -, (vi) 1 (wvii) BN {viii) E_-JT

(1%} " 4, 1y 5 () Z G0 (v 1 (v 2 (vibl  (wvild 2 (i
in 150 h
EXERCISE 12.4

=
-

10% 2. 15% 3. &% 4. 1400 5. 18000 6. Year 1 = 4800, vear 2= 3600
7. depreciable cost = 90000 | year 2 = 24000 8. 2230 9, 2867 10, 67500

[l Year | = 32000, Year 2 = 22400

EXERCISE 13.1

=1 1 44 1 1
L G 4x (i) (iil=30 (W) 2e=3 2. Ul £ ey e
3 ']-L i) 2x+2 4. (i . SR LNZe+ 37 (il 7 + B
- Dy ()2e~+2 I:-':I{E.I__E]R LN e+ 31 (ili) Teax + i)

SR y=8x+13 6 S y=-Sr—-8 1, y=-0r-8§ #o8 W é AFp=x+ 9
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3
T (a) 286’k (B ]T'.'i'm."}] 1. =2fevect2. 8cifr 130 (i) not differentiable (i) not
differentiable

EXERCISE 13.2

1. ()40 + 6 + 2 i JELIL\ it B e e
L)t e 2 (i) =3\ At 5z lrm:ll'j!"'lli‘- {iv} 21;} vl = 2x X

: o B 4 D=3 3 v XD
(vi) B—2x {vii) rfn.-'* _jlj'; : {m‘.l —3F [Lx][_l_:f_—”x-:

1 T T
3 -3+ 2 roair+3x-1

— —2x
_— 2. 1, e
(x) Wa—xfa bt e e IETE: W+ 1= 17 2/x {'\J’.'I: -1F En.ﬁ [f2 = xyF

EXERCISE 13.3

dov=157-6i1 ] 5. Muox. steess - 100, Tale of change — 0

6. [a) P{x) = =10 + T00x = 2000 (b) Bs, 400 (c) 35 units

B, (a) 2940 {by 27440 (¢} as lime increases rale increases

11, (a) L52my (b) 98meis? (c) (=047 secand ¢ = 113 sec 12, (a) T2k (b)) =126mh
(c) 2.3k 13, (a) 292Pa'm (byx=11.553m (c} incrcasing 14, (a)r= 14dm

(b Bs. 15625057 (] 1916866 unilsdm
EXERCISE 14.1
Loy /=90 (pl3s—27-224 (ill}'h.||2"'

3 =206 =¥ 2 =3 4 ~1£17
240 7; e Hfll}ﬁ 3 '3 .,|I[|||}Iﬂ 5 Q) &4 2
1 4 B 17i=11)- 164 20 0 5
mgdtel-gk =" ) =i+ =i-=
b gd=g 4 689 ﬁm\l'i_f:"l N
7 7
(i~ ".‘r_ T \J'_& Tox==3y=
=i+ 107 =5k
2.4 2. 4. 4 E !
9.{u) 5:'_5_;4:1- amd =3 i+3 /-3 &k (h)-3 (o) ﬁ

3 | R
(dy o E‘h 3 1, 108 179 Kilometers  1L{i) — 7 ..1.Ir{iij| "“’qr_ { 1
12, Only the triple (i)} 45°, 60F, 607 satisfics the condition for direction angles
of a single vector,
EXERCISE 14.2

ﬂ o ) A
L.} {ii} “‘_“m l[:ll]l"""""lSSH l[wj_\"“'l.iﬁ“
B . l|5 12 B A3 _ 4
24i) Projoction of @ along & =37 4t _.g jlﬁr Projection of & along gt — 3 ﬂ—Ti 5k
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et 20 0. 15
i i ; Prmection of b along @ 59 i3 ;'_ET!'L-#

L.-II'_.r.
_.r|

(i) Projection of @ along f %_H

£
Aqi) 3 {iiy 1or—5 4. 2or—3 & 7orovector

Guii) The points M4, =1, 2p (1. 3, =1), Ri=2, 4. 6% do oot Toom a right riangle,

S0 26
9. 56 M 10L 32 N IZ.—DEL: !

Nm
EXERCISE 14.3

Wiyaxb=—3j-3n; hxg=3j+3k (@grb=5i+3j-Tk bxg=-"5i-3/+7k
(iygxh==Ti=Ti bxg=Ti47/ ((V)axbh=3i=60k :hxg==3i+6k

Z1i—-9i-114 <643 —Ti+2i+5k g -k
?{I]T,Emﬁ—r (i} ‘J_ﬁ Hinﬂ:‘u‘}‘;wﬂ ‘ﬁ cmin b=

13i+ j+22k £
{i":' PO o S o A '=-||'| H _ﬂ Jl: _‘E

54 ‘J'_ 34i) soquAre unis (i) SOUANS TN

4(ip “nﬁ sqquare vnits ({1i) 4237 square wnits (iii) +) 190 square wnits
21

5
5 a= 3 h= ‘;l"' 6.0} Paralle] vectors: wand w ; Perpendicolar vectors: Mo

é.[

(i) Parallel vectors: i and w ; Perpendicular vectors: g and p @ v and w
11. Conclusion: At least one of the vectors g or b is the zero vector.
13, 48/ =4J+30% 14 =14/=14% 15 3i+3J+3406.15i=157/=154

EXERCISE 14.4

3
i) 25 cubic unils (i) 14 cubic unils (iid) 10 cubic unis 4.00) Bl {ii) =1

Ga)di 4 (i3 il (ivy0 ?.{I}%cuhimmils {ii}%cuhjc units

10. 3;[‘:30 11. 1507 = 100 & {in pound feet) 12, /41 meters

13. Rs, 332300, which is the toral revenue from the sales of all items.

14,2006+ 1107+ 50 & Nor 15.0a) [S00, 300, 2000, [500, 400, 20001 () Rs. 770004




Glossary

Complex Mumbers: The numbers of the form 2 — ci+if where g b _fa) und § = '-,I'—l . are called
comples numbers,

Conjugate Comples Mumbers: Let 2=+ iy he o compher pember, then a it s called the complex conjugsie
of @+ b Complex palymomial: Complex palymomial Piz)is a polynomial function of the complex variable = with

Tt t+az+a,

Feros of the function: 11 %) 15 a polynomial function, the valoes of z that sansGe Pz)= 0 are called the seros (or

roods b of the fumction.
L+of3i  1af3i
e — ﬁ.1|l.1.

2 2

complex coefficients. |1 is expressed in the general form us: P(z)=a z"+a, =z

Tmaginary cube vosts of unitv:  The sumbers containg § are called Comples numibaers, 5o are

called complex or imapinary cube roods of unity.
Elements of fthe matriv: The numbees wsed inoooews o columns ae said o be the eniries or elements of e matns,

Order of matrix: A brocketed rectangular armay of s elements @, (1 = L2 3,...m; j =1, 23,0,

arrenged 10 rows and o columns is colled an o by & moicix (Caritten as 87X B matnx), where 885 M s called
the prder of the matrix.

Row Mairix or Row vector: A mawix, which haz only one row, ie. | n matmix of the form

[”;- ey g e {)‘_.,‘] ig =and to be a row matnx or a mow veetor.

Bectumgular Matrix: 1Y 77 -2 7, then the maotrix 1z qulled o rectompgulor mafnix of order 3858 | thot 12, the matrx
m which the number of Tows is not equal o the number of columns, 1= swid o b2 o rectingular mirx.
Saquare Matrix: 1T = o, then the mateis ol erder 87307 a5 said o be a sguare matex of onder 2 oor e e, the

matrix which has the same number of rows and columns is called a square matri.

Mull Matris or Zere Malvin: A square or rectngular maleix whose each element is seno, 12 called a e or zevo
P,

Transpose of a Matrix: (T4 23 mairix of order TR X B then an 17X BT mains obtained by interchanging the
rows and columns of 4, is called the rranspose of A- It i denoted by A7

Inverse of @ Sguare Matris of Order o2z 3: Let A be o non-singular sguare matrx of order g, 17 here exists malr
B such that A8 = B = fﬂ . then & is called the multiplicative inverse of A and iz denotad by A

Partial Fraction: Exprcssing a rational function as a sum of pamial fractions is called Partial Fraction.

)
Rativnal Fraction: The quohent of two polynomisls ﬁ'ﬁ whers CHv) @ 0L wiath mo common tetors, 55 called o

Eatsonal Fraction,
M
Proper Rational Fracthon: A rational function % iz called a Proper Rational Fraction if the degree of the

polvnomial Fiv) in the numerator is fess than the degree of the polynomial L4030 in the denominator,

: oo F . . N
Improper Rational Fraction: A rational fraction % 15 called an Improper Rational Fraction 7 the degree of the

pobymominl Fx} in the numerator is egual to or greater than the degres of the polynomial £4x) in the depominator.

Irreducible Footer: A quadratic factor is irmeducible it cunnot be written as the product of vao lineor tactors with

real cocflicients. For example, &° +x + 1 and 27 + 3 wre imeducible quadratic factors.
=
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Fundamental Law of Trlgonomeftry: Let o oand & be any two  angles  {real numbers),  then
coslor — ) = coser cos F + sing sin ' which is called the Fundamental Law of Trigonometry.

Alliedd Angles: The angles pssocinted with baswe angles of mensure o a rght angle or tz muoliaple are colled Allwed
Angles.

Function: A function 15 a rule or correspondence, relating two sets in such a way that each element in the
first sct correspends to eoc and only ene clement in the second set,

Domning A Tonctien fTeem aosel X lo o sel ¥ is o cule or o correspondence thal assigns o eoch elemend xin X
a unbque element y in ¥, The set X is called the domain of

Range: The set of corresponding clements y in ¥ is called the range of £

Even Funetion: & function 7 is said 1o be an even if f{—x) = f{x), for every number x in the domain of [

Ol Funetion: A function [ s said 1o be an odd it J{=x)= — Fx), for every number x in the domain of [,
Veetor: A wvector 35 o guantity that has both magmitude and direction for examples displacement, velocily,
acceleration, weight, faree, momenium, clectric and magnetic felds, ee.

Scalar: A scalar is a quanticy that has only magnide or size, such as mass. time, density, fermperamre, lengih,
volume, speed work eic,

Uit Wesctor: A unil veclos 15 delined as a veclor whose magnitude is unity.

Orthogonality of Two Vectors: Two non-zere veerors o and v are perpendicalar if and cnly if e = v =0
Hyputhesis: A bvpothesiz is an educated gpuess or proposed explanation for 2 statement bozed on limited evidence.
Induetion of Hyprethesiss 1refers wothe process of formulatng o penersl statement or hypaothesis bused on specilic
cxamples or patierns observed in paricular cases.

Binomial Expression: An algebraic expression consisting of two tenms such as a +x, 1 — 2y, an — b et is called o
bimomial or @ bimamial expression,

Factorial: Factorial is a mathematical operation thar multiply a mumber by every positive integer below itrll 1,
Permutation: A permutation of & different objects taboen #0< o) af a time is an arrangement of the p objects.
Circulur Permutution: In circular permutation, there sre  (r — 130 ways for n distioct things or objects becouse
i eirenlar order, arrangements of things Cabjects can be mtated (o 17 times,

Limit of 2 Function: Lar a function £ x) be defined inan open interval near the sumber “&7 {need not o he an *a™.
It, as x appeoaches Yo fhom bath left and right sides of o, /{20 approaches a specitic number L7 Then L7 is
called the limit of /1 v) as 1 approaches to a

Divergent Sequences: A sequence is divergent iF i dees not approzch a finite value.

Monatonic Sequences; A sequence is monotemic s either entirely nonsimerensing of non=decrensing. Monotoni:
seqquences ofien converge, but not always,

Bounded Sequences: A sequence is bounded 1if there exists some real number M such that lanl < M for all m A
bounded sequerce mgy er may 1ol converge,

Arithmetic progression (AP} An arithmetic progression is a sequence in which each tenm after the first is found
by adeling a constant to the previous weem, This constant is called commaon difference of the arithmetic progression
umad 15 uswally denoted byd”

Serles: The sum of the torms of & sequence is called the serics of the corrcaponding scqueace.

Cevmetric Progression (GG A peometnie progression of geometne sequence 15 o sequense in which each term
after the fiest is found by multiplying the previous teem by a nonzere constant - called comman ratin,

Arithmetic geometric sequence {AJG.5): A sequence which is formed by multiplyving the correaponding terms of
an AP, and a GP, iz callad asithmetic-gpeomelns saquence,

Quadratic function: A quadratic function is a polvnomial function of degree two, 11 is typically expressed in the
gtandard forme: {5} = ax® — b + ¢, where @ band ¢ are real munbess, and o = 0.

Polynomial — Tunction: A polyoomal 0 o+ 35 an expression o the fomn
a,x + H"_,.TP_I +a 1" SR +a?.¥:3 + K ¢, 20 where o is » non-oegative inleger and

the coelMicients o, , ¢, | o6, 2pe o and o are el numbers
T —
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