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[ Description ]

Measurements

Force and Motion

Circular and Rotational Motion

Work, Energy and Power

Solids and Fluid Dynamics

Heat and Thermodynamics

Waves and Vibrations

Physical Optics and Gravitational Waves

Electrostatics and Current Electricity

Electromagnetism

Special Theory of Relativity

Nuclear and Particle Physics




. After studying this chapter, studants will ba able to:
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Makn masonable esEmates of value of physical quaniites [of thoss guanties that are discessed in
The bopess ol thia grade],

Ues the conventions forindicatng wenifs, a8 set outin the Sl units.

Expross darived units as products o quotioms of e 31 base unils

Anakyze the homogensity of physical equatione [Through dimeanslonal analysss)]

Deriva formulas in simple cases [Through using dimansional analyss]

Anabyze and crillgue he securacy and precisson of data collected by measuring insbumenis
Justiywhy all measrameants contain some uncartainty.

Assess the uncertainly in g derved quantity [By simple addition of absolute, fradiona or percenlage
wncertalnties]

Camde answers with cormect scientific notations, mumbser of significant figures and unéls in all
expermental and numerical resulls,

Ehysh:.s is the most fundamental branch of
physical sciencas, It provides the basic principles

and laws which halp to undarstand the mysterias of
ather branches of sciences such as asironomy,
chemistry, geakogy, biology and health sciences.
The tools, lechniques and producis of Physics
have transformed our dreams into realiies. The
comforts and pleasures added in our fives are
frutil  results  of science, lechnalogy and

engineering in everyday life.

The information technology has entirely changed “_
the ocuttook of mankind, The fast means of A

Gomputar chips are mada from alcon,

communication have brought people oftheentire b ir e fram sand. T areals
world in so close contact that the wholeworld has  whether we make a sand castie or a
bacoma a global village. cormpuberoul of it,

Physics is an experimental science and the scientific method emphasizes the need of
accurale measuremen! of vanous measurable physical gquantities, This chapler
stres=es in understanding the concept of measuring techniques and recording =2kills.
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1.1 PHYSICALQUANTITIES AND THEIRUNITS

The foundation of physics depends on physical quantities in - Areas of
terms of which the laws of Physics are exprassed. Therefors, “ -
thase quantities have to be measured accurately. TheSe an®  Heat & mermodyramics
mass, length, time, welocity, force, density, temperature, Elecliomagnetsm
alectric currant, and numearous others. Sour
Physical quaniities are often divided into two categories: base Wﬁmm
guartities and derived guantities. Denved quantities are those  Geners miamwity
which depend on base guantities. Examples of derived ?"mﬂ;pmm e
guaniities are velocity, acceleration, force, etc. Base quaniities m*rll'ml
are not defined in terms of other physical quantities. The base  Said ﬂ.f.,r.,'m
quantities are the independent physical quantities In terms of ~ Farlice physics o
which the other physical quantities can be defined, Typical  Supsriuidity
' Plagima {r]
examples of base quantities are length, mass and tima, “mmmﬂl! o
The measurement of a base quanlity involves two steps; first,  Spece physics
ihe choice of a s!anda_nrd. and s.e-n:!nd, the -Eestabdishmept of a Interdisciplinary
procedure for comparing the quantity to be measured with the areas of Physics
standard so that a number and a unit are determined as the Astraphyptics
mgasure of that quantity, Biopfysis
Chiamicsl physks
Measurements must be reliable and accurate so that they can  Enginesning physics
be usad. easily and effectivaly. Eﬂm,
Physical ooeanography
1.2 INTERNATIONAL SYSTEM OF UNITS Peysics of music

In 1260, an international commiilee agreed on a set of definitions and standards to
describe the physical guantities. The system that was established is called the System

International (S1).

Sl units are used by the world’s scientific community and
by almost all natons, The system International (Sl)
consists of two kinds of units: base units and derived
units.

Base Units

There are seven base units for physical quanfities
namaly: length, mass, time, lemperatura, aleciric
current, light or lumincus intensity and amount of
substance (with special reference to the number of
particles). Prefixes such as milli, micra, kilo, etc. may be
used with them to express smaller or larger quantities.

CHE TR

Physicsl Sl Unit | Symbel
| Oumntity
Lengin imsine i
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Timg BA0ond k]
Ebaetic ampare &
Thermodymarmic
tamperalure i &
mtensky  of
tight candela| od
Amaanl ol

sl iy ] mol

The names of base units for these physical guanbities logether with symbols are Bsted in

Table 1.1,
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Derived Units
Derved units ara those unils

which depend on the base o - Uit =i ot ba

units. Some of the derived vtonl RCRL: ;e S G

units are given in Tabla. 1.2 s Mo

The units of plane angle and Pifing sngle ot w Senonsion s

solid angle have also besn  Solid angle sleradran EX dimensioniees

included in the list of derived  Force nuatan ] kg m 8¢

units since 1995, Wark jouile J Nm=kgmisd

In addition 1o base and _ Power wit Ll J & = kg m* 5°

derived units, the 31 permils  Elecitic chame colamb & A

the use of certain additional T
Pressura paacal Fa HNm?=kgm e

units, including: L

= The traditional mathematical units for measuring
angles (degree, arcminute, and arcsacond).

«  The traditional units for standard time are (minute,
hour, day, and year),

= The legarithmic units bel{and itz multiples, such as the
decibal).

= Two metric units commonly used in ordinary life: the litre
for valume and the tonne (medric ton) for large masaes,

= Two non-metnc scientiiic units are atomic mass unit (1)
and the electron volt (gV},

+  The nautical mike and knot; units traditionally used at
sea and in meteorology.

*  Theacraand hectare, comman matric units of land area.

= The baris a unii of pressure and itis commonly used as
the millibar in meteorclogy and the kilobar in
ENgineerning.

= The angstrom and the barn, units used in physics and
astronamy.

Scientific Notation

Mumbers are expressed in standard form called scientific
notation, which employs powers of ten. The intemationally
accepted practice is that there should ba only one non-zero

written as 1,347 x 10° and 0.0023 be expressedas 2.3 x 107

Imtaresting | nformation

Mdass kgl
G-
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1=

10-m

Pyt Ewnrent
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Order of magnitude of some
digit left of decimal. Thus, the number 134.7 should be Mo#8es
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Prefixes

Most prefixes indicate order of magnitude in steps of 1000 | __Tahb

and provide a convenient way to express large and small | _Sorms Prafixes

numbers, to eliminate non-significant digits. 51 alkso

includes four of the other prefixes fo accommodate 107 o a

usage already established before the introduction of SI “T: e 4

(Table 1.3). They are centi{10%), deci-(10"), deka-(10") |7, e ;

and hecta-(107), 10* s 3

: . 10 il m

Conventions for Using Sl Units s o 3

Use of Sl units require special care. more particularly In :g" ::"; :'

writing prefixes. Some points o note are: 3t A 5

1. Each 51is reprasantad by a symbol nof an abbreviation, 107 ko k
These symbols are the same in all languages, Hence, 10 mega M
correct use of the symbol is very imporiant, :g:, :;': 'E’
For example: For ampere, we should use "A" not g pota p
*amp"; for seconds “s" not “sec”, Sinot 5.1, g™ #ed E

2. Full name of unit doas not begin with capital letter.
Forexample: newlon, metre, elc,, axcept Calsius,

For Your Information

Interval s}

3. Symbols appearin lower case, P e —
For example: “m" for melre, “s" for second, elc.,  Age of Mo Essth 1.4x107
exception "L for litre, ﬁ 1y 32010

4. Symbols namead afler scientists have nitial letlers m,tym_" S
capital. normal hearbaass Ba 10

Paniod of audiile

For example: “N° for nawton, “Pa” for pascal, "W for sciind ::-av:: 1x107
walt. ;ﬂﬂaﬁu 12107

8. Symbols and prefixes are printed in upright {roman}) Wﬂﬂm -
styla regardiess of the type style in surrounding text, soid gLl
Forexample: adistance of 50m, Eﬁﬂ;"“' e

6, Symbols do not take plural form, Approximute Values of Some
Forexample; Tmm, 100 mm, 1 kg, B0 kg, U il i

7. Nofullstop or dot is placed after the symbol except at
the and of the senlance, Masa can be thought of as a form

8. Prefixis written before and without space to base ynit. 2 frenay. In affecl the mass &

- * highly concenbvated form af araigy,

Forexample: "mL" notm L or“ms" not ms. Erﬁﬁl"'ﬂ tarnous equation, E=mc’

9. Base units arewriiten one space apart. Leave a space  Emargy= ﬁi apaed HLH_FI’
even between the number (value)and the symbol, S0 e,

_ mass & actually 5 x10% § energy.
Forexample: 1kg, 10ms™, etc.
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10. Compound prefixes are not allcwed:
Forexample: 1puF should be 1 pF.

11, When base unit of multiple is raised to a power, the power applies to whole multiple
and not to base unit alone,
Forexample: 1km =1{km} =1x (10" m) = 1x10" m’".

12. Use negative index notation (m 5'1] Instead of solidus (mis),

13. Use scientific natation, that is, ona non-zera digit left of decimal.
Forexample: 143,7=1.437x10°,

14. Do not mix symbols and names inthe same expression.
Forexample: metre per second orm s, not metre/sec or misecond.

15. Practical work should be recorded in most conveniant units depending upon tha
instruments being used.
For Example: Measurements using scraw gauge should ba recorded in mm but the
final results must be recorded fo the appropriate base units.

16. System Internaticnal do not allow the use of former OGS System units such as dyne,
B3, gauss, poise, Tor, etc.,

1.3 UNCERTAINTYIN MEASUREMENT

You can count the number of pages of a book exactly but measurement of its length
neads soma measuring instrument. Evary Instrument | calibrated to a cerain smaliest
division mark on it and this fact puls a limit regarding its accuracy. When you take a
reading with one instrumant, its limit of measurement 15 the smallest division or
graduation on its scale. Hence, every measured quantity has some uncerainty aboutits
value, Whean a measuremeant is made, it is taken to the nearest graduation or marking on
the scale, You can astimate the maximum uncertainty as being one smallest division of
the mstrument. This is called absolute uncertainty. It is one millimetre on & metre ke
that is graduated in millimetres, For example, if one edge of the book coincides with
10.0 cm mark and the other with 33.5 cm, then the lsngth with uncertainty is given by

(33.5 2 0.05) cm - {10.0 £ 0.05) cm = (23-5 £ 0.1) cm
It means that the true length of the book is in between 23.4 om and 23.6 cm. Hence, the
maximum uncerainty is 0,05 cm, which is equivalent to an uncerainty of 0.1 cm.
Infacl, it is equal lo leas! count of the metre rule. Uncertainly may be recorded as;
Absolute uncerainty
Measured valua
Absolute uncertainty &

Measured value
Uncertainty in Digital Instruments

Some modern measuning instruments have a digital scale, We usually estimate one

Frackonal uncerlainty =

or Percentage uncertainty = 0
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digit bayond what Is certain; with a digital scale, this is reflected in some fluctuations of
the last digit, If the last digit luctuates by 1 or 2, write down that last digit. 1T fluctuation is
moare than 2 or 5o in the last digit, it may meaan that the reading is being influenced by
some factor such as air currents, Regardiess of the reason, a large fluchuation may
rnaan that tha displayad digit is not really significant.

The indication of uncertainty in a recorded value has been simplfied using significant

figuras. If a measuremant is recordad using the knowledge of significant figures, then its
last digit, which is an estimation, is an indication of the accuracy of the recorded value.

1.4 USE OF SIGNIFICANT FIGURES

The number of digits of a measurement about which we
do feel reagonably sure are called significant figures.
Infact, they reflect the use of actual instrument used for u-ﬁ

1o

For Your Information

that measurement. YWhile uzing a calculator, the result of

any calculation contains many digits after the decimal ! o Dinmater of &
point. The additional digits may mislead anothar person [ “'_' S

who uses those figures into believing them, Hence, they "™ [ 905 o siem
are 1o be rounded off to the cormect number of significant i

figures. This can be done by keeping in view the m ‘ mﬂ'
uncertainty or the least count of the instrument while : @mlm
recording observations and also quating results of any e |- Dhatancs 1o The
calculations to the carrect numbers of significant figures. ! ;":“_ .
Itis better to quote the resull in scientific notation to avaid 2l e ERSECE
any ambiguity regarding the number of significant figures. i md -
For example, waighing the same object with differant <] s ot
balances:

Electranic balance - mass=3,14510.001g Order of magnitude of some
Lewver balance romazs=3120.1g R

Usually, the uncertainty + 0.001 g or £0.1 g is dropped, and it is understood that the
number quoted has an uncerdainty of atleast 1 unit in the kst digit. All digits which are
quoted are called significant figures. In any measurement, the accurataly known digits
and the first estimated or doubtful digit are called significant figures. Proper use of
significant figures ensures that we comecty represent the uncerainty of our
measurements. For example, scientists immediately realize that the reported mass
3.145 g Is more accurals than a reported mass of 3.1 g, rellecting the use of a better or
more precise instirument. As we improve the quality of our measuring instrument and
techniques, we extend the result o more and more significant figures and
correspondingly improve the experimental accuracy of the resulf.
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Working with significant figures

(i) Counting significant digits

ia) All digits 1,2,3,4,5,6,7,8.9 are significanl. However, Zeros may o may nol be
significant, In case of zeros, the following rules may be adopled:

by Azerobatwaan two significant figures 1s iself significant,

{c) Zeros io the left of significant figures are not significant. For example, none of the
zaros in 0.00467 or 2,59 s significant

(d)  Zeros to the right of a significant figure may or may not be significant. In decimal
fraction, zeras to the right of a significant figure are significant, For example,
all the zeros in 3.570 or 74000 are significant. However, in integers such as
8, 000 kg, the number of significant zeros is determined by the precision of the
measuring instrument. If the measuring scale has a least count of 1 kg, then
there are four significant figures written in scientific notation as 8.000 x 107 kg. If
the least count of the scale is 10 kg, then the number of significant figuras will be
3 written in scientific notation as 8,00 x 10" kg and so on.

{8}l  When a measurement is recorded in scientific notation or standard form, the
figures othar than the powaers of ten are significant figures. For example. a
measurement recorded as 8.70 x 107 kg has three significant figures.

[ii) Multiplying or dividing numbers

Feep 8 number of significant figures in the product or quotient not more than that
comained in the least accurale factor L.a,, the faclor containing the least number of
significant figures. For example, the computation of the following using a calculator,
gives

5.348 =107 » 364 10" _
eSS

As the factor 3.64 = 107, the least accurate in the above  For calculation of end result:
calculation has three significant figures, the answer should  « Addition / Subtraction; sama
be writtan to three significant figuras only, The other figures  precision,
are insignificant and should be delated. While deleting the = Mulliplication / Division: sams
figures, the last significant figure 1o be retained is rounded mmi'; 1"""“ =
off for which the following rules are followed:;
ta) IF the first digit dropped is less than 5, the last digil retained should remain

unchangead.
(b} Ifthe first digit dropped iz mone than 5, the digit to be retained is increased by one.
{c) Ifthe digit to be dropped is &, the previous digit which is to be retained is increased

by one f it iz odd and retained as such if it iz even. For exampie, the following

numbers are rounded off to three significant figures as follows. The digils are
daleted ona by one.
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56,8546 is rounded off as 96.9 For average value of many readings:
T3.850 s rounded off as 73.6 3 T;I::. duvihion. from . an aveiage
54,350 iz rounded off as a4 .4 « Periodic Uncertainty:

Following this rule, the corect answer of the Divide keast count of liming devics

computation givenin section (i) is 1,46 x 10°. BN O SRR

{lii) Inadding orsubtracting numbers

The number of decimal places retained in the 4 6w the comect number of significant
answer should be equal to the smallest number of  figures for 0.0054 m, 06,03030 m,
decimal places in-any of the quantities being added  400m 0.5m, 8,20x 10" m.

or subtracted. In this case, the number of significant  2.Give the answer (o the appropriate
figures is not important. It is the position of decimal  numberof significant figures,

that matters. For example, suppose we wish to add 2602 kg + 3502 kg +54.1kg=7

the following guantities expressed in metras. 3.Give the answer o tha appropnate
() 721 Vi) 2.7543 numberofsgnilicar figumey,
54 kg-24kp ="
= il 4, 1Ive the answer to he appropaate
0.003 1.273 numberof significant figure,
75.523 8.1273 2A5X 10 MR ZABM [ 3Bm="7
Correci answer: T5.5m 8.13m

In case (I}, the number T2.1 has the smallest decimal places, thus the answer is rounded
aff to the same position which s then 75.5 m. In case (i), the number 4.10 has thea
smallest number of decimal places and hence, the answer is rounded off io the same
decimal positions which isthen 8,13 m.,

Limitations of Significant Figures

Significant figuras deal with only one source of uncartainties that inherent in reading the
scale. Feal expenmental uncartainties have many confributions, including personal
errors and sometimes hidden systematic ermors. One cannot do better than that what the
scale reading allows, but the total uncertainty may well be more than what ihe significant
figure: of the measurements would suggest.

1.5 PRECISIONANDACCURACY

The terms precision and accuracy are frequenthy used in
physics measuremenis, They should be distinguished . precision: Less absolute

clearly. The precision of a measurement is determined by the Lineartalnky.
mstrument or device being used. The smaller the leasi count = Accuracy: Less % age
the mare precise Is the measurement, Accuracy is defined  Uncarainty.

as fhe closeness of a measuremant lo the exacl or accepled value of a physical guantity,
It is expressed by the fractional or percentage uncerainky. The smaller the fractional or
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parcantage uncerainty, the more accurale is the
measurenent,

For example, the length of an object is recorded as
25.5 cm by using a metre rule having smallest divizion In
milimeatre. Hs precision or absolute uncertainty (least
count)=£0.1cm,

Fractional uncertainty = % =0.004
Percentage uncertainty = ljﬂﬁg—c;n <100 = 0.4%

Another measurement taken by Vemier Callipers with
least count 0.01 cm is recorded as 0.45 cm., It has pracision
ar absolute unceartainty (least count)= £ 0.04 cm.

Fractional uncertainty = 01 ';"'; =0.02

Parcantage uncedainty = 15T gap= oo
Q.45 cm

Thus, the reading 25.5 cm taken by meire rule is although
less pracise bul is more accurata having less parcantaga
uncertainty or error.

Whereas the reading 0,45 cm taken by Vernizr Calkpers is
more pracise bul is less accurata, In fact, it is the refativa
measurement which i3 important, The smaller a physical
guantity, tha mara preciss instrumant should be used. Hara
the measurement 0,45 cm demands that a more precise
instrument, such as micrometer screw gauge, with least
count 0.001 om, should have been usad. Henca, wa can
conclude that;

A precise measurement is the one which has less
precision or absolute uncertainty and an accurate
measurement is the one which has less fractional or
percentage uncertainty.

We can never make an exact measurement, The best wa

can do s (o come as closa as possitda with in the limitation
ofthe measuring instrument.

1.6 ASSESSMENT OF TOTAL
UNCERTAINTY IN THE FINAL RESULT

Knowing the uncarlaintias in all the facters involved in a
calculation, the maximum possible uncertainty or error in
the final result can be found as follows:

For your information

Wie use many devices o maasure

prrysical cuanibes. such as length,
tima, prd femperabre, They afl nove
g0 Limi Lol precisian.

For your information

These &= nol desaralion mecss
of gkass bul ars the earlies]
knpwm  grquisfia . and sansliiva
tharmameters, built by tha
Accadamia  dal Cimenio  (1657.
1B&T), In Florance, They condained
alzohol, some limes coloured red for
aasier reading.
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1. For addition and Subtraction

Abselute uncertainties are added. For example, the Golaur printing uaay st four
distance between two positions x, = 15.4 £ (L1 cm colours-cyan, magantz, yallow

and x, =25 6em 0.1 em IS racardad as: and black ko produce the anbim

Y range of colours. All the oolours
s f.':,i‘lﬂ.E:I:D_E-l:m. in this book have besn made
and addition of two lengthsis: from just thesa fowr colours.

i,=8.5+0.1cmand i, =126 0.1 cm recorded as:
f=f+i,=21.1+0.2cm
2. For multiplication and division

Percentage uncertainties are added. For example, the maximum possible uncertainty in
tha value of resizstance R of a conducior determined by the potential diference Vapplied
across the conductor resudting in cument flowing through it is estimated as under:

Let V=234401Y Thumb Rube for Total Uncerainty

For your information

I = 0.6820.05 A + [Foraddition and subiraction:
. = Absalute uncerainties are added,
usng R=va + Eormultiphication and divielon:

Parcantage uncerainty in v = E:: 3 =100 = 3% Peroentage Lncenaintios s addad.
= + [For power factor:

Parcantage uncerainty in = g,glﬁ # 100 = 7%  Powerfactorx Pencentage uncartainty

Hence, total percentage uncerainty inthe valueof B is 3 +7 = 10%

The value of K will be writlen as:
. 34V

R = Ggsa =°00ohm Travel time of light
Hence, R =5.01 0.5 chms, uncerainty being anestimate  Moon o Earth 1 min 20 5
only. s recorded by one significant figure. Bun o Earth 8 rmén 20 5
Pl i Egrth Shi0s

3. ForPower Factor

The percentage uncertainty (s multiplied by the power factor in the formula. For
example, the calculation of cross-sectional area of a oylinder of radius r= 1.25cm using
formula for Arsa A = af s given by the %age uncartainty which is A = 2 x age
uncertainty in radius r. As uncertainty is mulliplied by power factor, it increases the
precision demand of measurement. When the radius of a small sphere is measured as
1.25 cm by Vernier Callipers with least count 0.01 cm, than

Theradius risrecorded as r= 1.25£0.01cm
Seage unceralnty in radiuz ris r= % = 100 = 0,8%

Total percantage uncertaintyinarea A = 2x0.8=1.6%
Thus A= qf

3.14 {1.25) = 4.906 with 1.6% uncertainty
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Thus, the resull should be recorded as A= 4.9120.08cm

Example 1.1; The length, breadth and thickness of a metal sheet are 2.03m, 1.22m
and 0.95 cm respectively. Calculate the volume of the sheet correct up to the
appropriate significant digiis.

Solution: Given Length f(=203m
Breadth b=1.22m
Thickness  h=0.85cm=0.95x10"m
Wolume V=r:bxh=2-ﬂﬂmx1_ﬂm:u:L'I-EiE.x‘Iﬂ'Em

=2.3527T %10 m

As the factor 0.95 em has minimum number of significant I’Igums_gqqfllnm, therafore,
volume is recorded up to 2 significant figures, hence, V=24 x10 m

Example 1.2: The mass of a metal box maasurad by a lever balance is 3.25 kg, Two
gilver coins of masses 10.01 gand 10.02 g measured by a beam balance are added to it.
What is now the total mass of the box correct up to the appropriate precision?

Solution:
Total mass when sitver cains are addedtobox = 3.25 kg + 0.01001 kg + 0.01002 kg
= 3.27003 kg

Since least precise mass is 3.25 kg, having two decimal places, hence, total mass
should be reported to 2 decimal places which 15 the appropriate pracision,

Thus Totalmass = 3.27 kg

Example 1.3: The diamater and length of a matal cylindar measured with the help of
Vemier Callipers of least count 0.01 cm are 1.256 cm and 3.35 cm, respectively.
Calculate the volume Vafthe cylinder and uncertainty in it,

Solution:  Given

Diameter ¢'=1.25cmwith least count 0,07 cm

Langth F= 335 cmwith keast count .01 cm

Absolute uncertainty in length =001 cm

Seage uncertainty inlength ={0.01cm/3.35cm) =100 = 0.3%

Absolute uncertainty in diameter = 0.01 em

Thage uncertainty in diametar =(0.01 am/1.25em) = 100=D0_8 %
Az Volume mrri=n o

Total uncertainty in V=2 (%age uncenainty in diameter] + (Y.age uncertanty in length)
=2x08+03=19%

Then V=314 = (1,25 em)’ » 3. 35cm/d = 4 1089842 cm’ with 1.9 % uncertainty

Thus W=(4.1140.08)cm’

where4.11 cm’ is calculated volume and 0.08is the uncertainty init.




1.7 DIMENSIONS OF PHYSICAL
QUANTITIES

Any physical quantity can be deszcribed by cerain
familiar properties such as length, mass, time,
tamperature, electric current, atc. Thasa measurable
properties are called dimensicns. Dimensions deal with
the quaktative nature of a physical guantity in terms of
fundamental quantities. The guantities such as length,
depth, height, diameter, light year are all measured in
meatre and denoled by the same dimeansion, basically
known as length given by symbol L written within square
bracket [L]. Similary, the other fundamental quantitias,
mass, tme, eleciric current and temperalure are
denoted by specific symbols [M], [T], [A] and [0],
respectively. These five dimensions have been chosen
as being basic because they are gasy to measure in
experiments.

The dimensicns of other gquantiies indicate how they
are related to the basic quaniities and are combinaticn
of fundamental dimensions, For example, speed v is
measured in metres per second, 30 it has the
dimensions of lengih [L] dwvided by iime [T ].
1 1

V= [V [T]=1LT 1=ILT ]
Az tha acceleration a = Av/ Al
Dimensions of acceleration are

[a]=[W [T]=[LT ) [T]=[LT7]

Also, dimensions of force can be written as

[F1=[m] [a}= M (LT™] = [MLT™]
By the use of dimensionality, we can check the

homogeneily (correctness) of a physical equation, and
alzo, we can derive formula for a physical guantity.

Homogeneity of Physical Equations
Caorrectnass of an equation can be checked by showing
thal the dimensions of guantities on both sides of the

equation are the same. This is known as principle of
homoganeaily.

Suppose a car starts from rest (v, = 0) and covers a
distance 5 in time ¢ moving with an acceleration a. The
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equation of motion s given by,
1

” S
5 = u,HE,af

or &5 o= %—ari

Mumerical factors like 1/2 have no dimensions, so thay
can be ignored. By putting the dimensions of both sides
of the equation:
[51= [&[t°]
Writing the symboks of dimensions [L]= [LT)[T°]
[L]= L7777
or [L]=[L]
This shows that dimensions on both sides of equation

are the sama, therafore, the aquation is dimensionally
correct.

Derivation of a Formula
Dimensionality can be usad to derive a possible formula

for & physical quantity by correct estimation of various mmﬁm il
factors on which the quantity depends. ’

Example 1.4: Derve a formula for the centripetal force required to keep an object

maving along a circle with uniform speed. Assuming that centripetal force depends on
mass of the object, radius of the circke and uniform speed.

Solution: As force depends on mass m of the objadt, radius rof the circle and uniform
spead v,

Foumyvr

F = (constant) m'v'F oo e ()

where the exponents (powers) a. b and ¢ are to be determined. By the principle of
homogeneity, the dimensions on both sides of the equalion should be the same, Since,
constant has no dimension so by ignoring it, we write the above equation in terms of
dimensions as,

[reguisting device)

F1 = [m'][v'][F]

ML = [IUTEL

MLT] = M]LLT T Caloulators ane designed 1o

da digits: th

ML) = (ML™ST] iy A O 1 Pt ol
Comparing the powers of dimensions on beth sides ﬁr:::'. ﬂ.,al mm E;
of the above equation, we have calculations down o comect

ity of Sigriscam figums,

a=1
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b+g =1
4 =2
Solving the above equations, wehave a=1.6=2,¢=-1
Putting the valuas of .0 and © ineguation (i}, wa have
F = (constant) mvr
ar F ={mtant]rnv?fr
The numerical value of the constant cannot be determined by dimensional analysis,

Howaver, It can be found by experiments. (n the above equation, numerical valua of the
constant happens tobe 1", sothe equation reduces to:

E=muir
Limitations in Dimensional Analysis
The dimansicnal method cannat identify whera an equation is wrong, Even if an
equation is proved comrect, we can only say the equation might be correct, forthe reason
that tha method does not provide a check on any numerical factor or constant, That can

anly be determired by experiments or plotting some suitable graph belween the
variables.

oy 1

oo

|@ Multiple Choice Questions |

Tick {+ ) the correct answer,
1.1 The purpose of study and discoveries in Physics is.
[a) the probing ofinterstellar spaces
(b the bettermant of mankind
(e} thedevelopmeant of destructive technolagy in warfare
[d} developmentin aesthetics for the world

1.2 Thalength of 4 steal pipa s in betwean 0.7 m 1o 0.8 m. [dentify from the following, the
appropriate instrument to be used for an accuracy af 0,001 m,

(@) Amicrometer screw gauge ()  Ametre rule
(b} Atenmetres measuning tape. (¢} AVemnier Callipers

1.3 The diameter of a steel ball iz measured using a i
Vernler callipers and its reading is shown in the | | I | I \
figure, Whal is the diameler ol The steal ball? Tl S -
(@) 1.30cm i) 1.3%cm

(e} 1.4Dcm (d) 1.31em
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14 Thae figure shows the reading on 8 micromater soraw
gauge used o measure diameter of a thin rod. One
complata tum of the himble i=0.50mm and thera are
20 lineson the circular scale. The diameter of the rod is:

{a) 3.67 mm (b} 317 mm (e} 417 mm {d) 420mm
1.5 The numbsarof significant fguras of a measurement are dafined as;
(&) they reflect the accuracy of the observation ina measurement
{c)  theyarethe figures which are reasonably reliable
{d) they are the accurately known digits and the first doubtful digit of a
measurement

{c) allofihe above
1.6 The numberof significant igures Inthe measured mass 2500.0 kg is

{2} two (B} three {e) four (d) five
1.7 Thesum12 kg + 2.02 kg + 5.1 kg socording to appropriate precision is:
{a} 19kg (b} 19.0kg iy 19.1kg (d) 1912 kg
1.8 The answarioappropriate precision for the sublfraction (1.126-0.97 268 I=:
{a}y D15 (b} 0.153 () D.1533 (d) 0.15332
1.9 The answer of the product (2.8723x1.6) o the appropriate number of significant
hguras bs:
(@) 4.59568 (b} 4.585 {c] 4.58 {di 4.6

1,10 The answer o the mathemalical divisson {45.2 + §.0) In appropnate number af
significant igures is:
{8) 7.5 by 7.53 (¢) 7.533 (d) 7.5333

1.11 The anzwear 1o the following mathematical oparation 24,4 m £ 100 m /5.0 m to tha
appropriate numberof significant figuresis:;

[2) 4BBOm (b} 4000m fe) 4.88:10°m () 4.0x10°m
1.12 The ratio of the dimensions ot force and energy is
fa) T by T {e) L {d) L'

1.13 Identify which pair from the following does not have identical dimensions.
{2) Work and lorque
{by  Angular momenium and Planck's constant
{e) Momentofinartia and momentof force
{d} Impulze and momentum

1.14 The following figuras are of tha samsa 88
Varnier calipers. Figura {1) shows the
reading when the jaws are closed while
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Fig. (2} shows the reading when a 2olid cinder is placed between the jaws, The
length of the cylinderis

{a} 3.26cm (b} 3.30cm c) 3.34cm (dl 4.20cm

1.15 Theleasi count of an instrumant determines

(a) precisionof a measurement

{c) accuracy of a measuremeant

{e) [Iractional uncertainty of a measurament
(d} percentage uncerizinty of a measurement

1.16 A measuring fapa has been graduaiad with a minimum scala division of 0.2 om

11
1.2

1.3

14

1.5

1.6

1.7

1.6

1.1

1.2

1.3
1.4

The allowed reading using this tape may ba
(a) B0.5cm (b) 80.6cm (e} B0.BS5cm (d) BOD.Tcm

u_ Shn_rt Answer Questions E

What are base units and darived units? Give sama axamphes of both thesa uniis.
How many significant figures should be retained in the following 7
() Multiplying or dividing several numbers (i) Adding or subtracting numbers
How is the Vernier scale related to the main scale of a Vemier Callipers?
What iz meani by L.C. of the Vernier Callipers?
Write the following numbers in scientific notation.
a) 1437 {p) 206.4%10°
Wrile the following numbers using correct prefixes:
{a) 580x10°g (b)) 0.45x10%s
Kinetic energy of a body of mass m moving with speed vis given by 172 mv'. What
are the dimensions of kinefic energy?
How many significant figures ara there in the following measuremeants?
(i) 3Tkm iy Q.002953m (i) F.50034em (i) 200.0m
Write the dimensionsof. {i) Planck's constant (i) angular velocity

|] Constructed Response Questions E'
Why do we find it usaful to have two units for the amount of a substance, the
kibogram and the miola?

Three students measured tha length of a rod with a scale on which minimum
division is 1 mm and recorded as: (i) 0.4235 m (i) 0.42 m (i) 0.424 m. Which record
is corect and why?

Why is the kilogram (not the gram), the base unil of mass.

Consider the equation; P= G+ R

If Qand R both have the dimensions of [MLT], what ara the dimensions of P 7 What
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1.5

1.6

1.f

1.8

19

== |

are the units of Pin SI7 If the dimensions of Q were different from those of &, could
we determine dimensions of B 7

VWhat is the least count of a clock if it has;
{a) Hour'shand, minute's hand and sacond’s hand
{(b) Hour's hand and minute's hand

How can the diameter of a round pencl be measured using metre rule with the
same accuracy as that of Viemier CallipersT Describe.

How would be the readings differ if the screw gauge is used Instead of a 'l.n'emmr
Callipers to measure the thickness of a glass plate? b
Write the carrect reading of the length of a salid
cylinder as shown in the figure if there |5 an arror
of +0.02 cm in the Vermnier Caliipers. LT

There ara 50 divisions on the circular scale of a scréew gauge. If the head (thimbile)
of the screw is given 10 revolutions, then the spindle advances by 5 mm. There is
alse zere error as the 2nd division of the circular scale
coincides with the datum line and zere of circular scale is
below the datum line. What is the thickness of a glass slab
as measured by the describad screw gauge shown in the
figure?

1.10 Whatis meant by a dimensionless quantity ¥ Give ona exampla,

1.11 Astudent uses a screw gauge to determine

the thickness of a sheet of paper. The
student folds the paper threa times and

measures the total thickness of the folded

shaat, Assume that thera is no zero arror in
the screw gauge. The reading of screw
gauge is shown in the figure, Find the /

thickness of the sheet,

1.12 Round off each of the following numbers to 3 significant figures and wnte your

1.1

1.2

1.3

answer in scientific notation.
{a) 0.02055 (b) 4856.5

'@ Comprehensive Questions |
What is meant by uncertainty in 8 measurement? How the uncertainty in a digital
instrumant is indicatad?
Differentiate between the terms precision and accuracy with reference o
measurement of physical quantities.
{a) What iz meant by significant figures? \Write wo reasons for using them in
measurements. How fo find the uncertainty in a timing experiment such as the
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1.4

1.5

1.1

1.2

1.3

14

1.5

1.6

1.7
18

time period of a simple pendulum?

b} The mass of a solid cylinder iz 12.85 g. s length is 3.35 cm and diameter is
1.25 om. Find the density of its material expressing the uncerainty in the
density.

Explain with examples the writing of physical qguantities inio their dimensions, Wrile

its two hanafits.

Check the homogeneity of the relation:

p= (121
m

where v is the spead of transverse wave on a streiched sting of tension T, length ¢
and mass m.

]_ Mumerical Problems '_

Astronomers usually measure astronomical distances inlight yvears. One light vear
i the distance that light travels in one year. If speed of light is 3 x 10" m 57, what is
one lightl year in metres? (Ans: 9.5x10" m)

Write the estimated answer of the following in standard form.
{a) How many seconds aretherain 1 year?
(B} Howmanyyearsarein 1second?

(Ans: (a)3.2x 10" s(b) 3.1 x 10 years)
The length and width of a rectangular plate are measured fo be 183 cm and
14,80 cm, respactively, Find the area of the plate and state the answer to comrect

numberof significant figures. {Ana: 26T cm')
Find the sum of the masses given in kg up to appropriate precision:
{3197 (i) 0.068 (i) 139 (W} 3.28 (Ans: 204 kg)

The diameter and length of & metal oylinder measured with the help of a Vemier
Callipers of least count 0.01 cm ara 122 cm and 5.35 cm respactively. Calculate its
volume and uncertainty in it. (Ans:6.2=0.1cm")
Show thal the expression v, — v’ = 2a8 is dimensionally correct, where v is the
initial velocity, ais the acceleration and v, is the velocity after covering a distance 5.
Show that the famous “Einstein equation” E = mc’ is dimensionally consisiant.
Derive a formula for the time period of a simple pendulum using dimansional
analysis. The various possible factors onwhich the ime period Tmay depend are:
(i lengthof the pendulum |

(ii} massofthebobm

{iil) anglefwhich the thread makes with the vertical

{iv] accelerates due to gravity g {Ans: T Eanstam.,'é)




. After studying this chapter. the students will be abls to: .

¥ *HeD

Diferentiates belween scala and vactor quantites

Represant & veslorin 2-0 a5 hvo perpendicular companénis

Dascribig fha product of bvo visclors (doland crosg-productialong wilth ihalr propeniss.

Dariva the squations of metion [For uniform acosleration cases only, Derve from the definiions of
valocily pnd scceleration aswell a5 graphically]

Salve probléms uging the equitions of motion [For the tages of unilormly acceamtad molion n &

afreghl line, mcsding the motien ol bodies faling in & unlform gravitatonal fisld without air

resisiance;
This also Includes siuations whiere the equations of mation need to be resolved info verical and

horizonial components far 2-Dmolion]
Evaluale and analyse projechile motion in the absence of ar resisiance
[This mcludas sobving problams making usa of the below facts:
{l} Horizontal component(V of veldocity = conetant,
{il)  Accelaration s inthe verllcal diection and e the same as that of & verically free faling cbject.
i} The horzontal moten and vedical molion are dependent of sach oiher Stuations may
reguing siudants o determine for projecties:
-  Howhighdoss #go?

Howw far would if go along the lewved lang?

Wheare would [l be after aglvan ima?
= Howa loig will it rerraen in light 7
Situabons may alsorequine sludents o calculate for  projecile launched nom grownd, height the
- Rupth angla that results in the makimom rango.
- melation between the aunch angles that resultin the sama ranga, ]
Predict gualitatimaly how air resisiance affects progectile motion, [This incudes analysis of both the
horizonial eomponent and varical companan] of weleaily and hone predicling quakitalizely thi
rangpe ofthe projectés.)
Apply the principle of consarvalion of momentum b solve simple problems [Including &lastic and
Inedzslic interactions bebween objects In both one and two dimensions.
Enowledge of the conce plof cosfficlant of restitution s nol requined.
Examples of applications ncide.
- kasate chops lo break a pile of bricks
«  carcrashes

ball &hat
- ftha motion under thrust of a rocket i a strasght line considering short thrusts during which the
s rermeains constan]
Predict and anahse mobion for elastic collisions [This include making use of thi Fact that Toran ekslic
colision, ofal kinelic enargy s comserved and the relalive spead of approech & egual o Bhe relalive
spaad of paparation]
Justity how the momentum of a dosed syslam |s alwaye conserved, some change in kinetc epergy
may take place,
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BASIC CONCEPT OF SCALARS AND VECTORS

Scalars and vectors are basic concepts in physies. Many problams in physics require to
distinguish between scalar and vector guantities to apply the comrect mathemaltical and
conceptual approaches. Understanding scalars and veciors help us fo grasp how
physics applies 1o real-world situations, such as calculating the total distanca travelled
{scalar) or determining the magnitude and direction of force {vector). Learning these
concepls develops critical thinking and problerm-solving skills, This chapter is primarily
concamed with vactor algebra and its application in uniform accelerated motion, in a
straight line, motion of freely fallng bodies in uniform gravitational field, projectile
maticn, and interaction between objects in one and wo dimensions,

2.1 SCALARS

Scalars are physical quantities that are described solely by a magnitude {size or
amount} without any mention of direction. Thus, scalars are directionless and can be
lully characterized by a single number and its associated unit.

Examples:
Mass: The amount of matter in an object. For example, 2 kq.

Distance: The total length of path travelled by an object irespective of the
direction, Forexample, 50m,

Spoeed: The rate atwhich an object covers distance. For example, 40 kmh'.
Time: The ongoing sequence of evenis leking place. For exampls, 20
saconds,

Energy: The capacity to dowork, For example, 25 J.

Temperature: Ameaasure of the average kinetic anergy of particles ina substance. For
example, 20°C.

2.2 VECTORS

Those physical quantites which have magnilude well as direchon for their complete

specification.

Examples:

Displacement: The change in position of an object. It has length, a distance
[magnitude) and a direction (2.g. 10 m towards west).

Velocity: The speed of an object in a particular direction (e.g., 50 km b fowards
west),

Acceleration: The rale of change of velocity thal occurs in either speed or direclion or
both (e.g., 10 ms” upward).

Forca: A push or pull acting on an objact, determined by it magnitudse and
direction (e.g; 20 N tothe right)
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Graphical Representation of a Vector

A good way o represent a vector guantity is to use a vector diagram, in which vectors
are aften represented by arrows. The langth of the arrows indicates the magnitude and
the head of the arrow shows the direction of the vector, "u"BE.‘-iPI'E are typecally deanoted by
hold face letters {e.g; V, F)or an arrow head above symbaol (A).

Rectangular Components of a Vector
A component of a vector is ils effective value in a given direction. A vector may be
considered as the resultant of its componant vectors along the spacified directions. It is

usually convenient to resclve a wvecior info its compeonents along the mulually
perpendicular direcfions. Such components are called rectangular components.,

Let there be a vactor A represaented by a kne OF making an
angle 8 with the x-axis. Draw projection OM of vector Aon  Ng-———----=

w-axis and projacton ON of vector A on y-axis as shawn in ]
Fig.2.1. Projection OM being along x-direction represented ,‘
by A, and projection ON along y-direction is represented by :
A,. By applying head to tall rule: S g .-_:w =

PN N R Fig, 2.1

Thus, A, and A, ara the comoponants of vactor A. Since these are at right angle o each
other, they are called rectangular components of A, Considenng the right angled
Iriangle OMP, the magnitude of A, or x-compaonent of A is:

And the magnituede of A or y-component of A ls:
AFASINE ..o (2.3)

Determination of a Vector from its Rectangular Components

It the rectangular companants of a vector as shown in Fig.(2,1) are given, wa can find
out the magnitude of the vector by using Pythagorean Theoram.

In the nght angle AQMP
(OF) = (OM) + (MPY’

ar L ol B e SR {2.4)
ar A= I|I i ,q:‘
MP A
The directlon 0 is gven b Pl Sl
4 ¥ tand oM~ A,

o a= tan’ :%; ______________ 2.5)
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Example 2.1: Find the angle between two forces of equal magnitude when the
magnilude of their resullant is also equal ko the magnilude of either of thesa forces.

Solution: Let B be the angle between two forces £, and F, where F, is along x-axis, Then
x-compaonent of their resultant will be:

B.=Fcos0"+F,cos i
R =F+F o8t

And y-component of their resuliant is
R, =F slin0°+F, sin B

R, =F.sink
TheresultantRisgivenby R'= R +R,
As R=F,=F,=F
Hence F* = {(F+Foosf + (Fsinf)f
F' = F' +Figos'0+2F cos 0+ F sin'd
Or 0 = 2Fcash+F" (cos™n+sin')
or 0 = 2F cosB+F
ar cost =-0.5
ar 8 = cos"{-0.5) = 120"

2.3 PRODUCT OF TWO VECTORS

Thera are two typas of vactor multiplications. The praduct of thesa wo typas are known
as scalar product and vector product.

If the product of two vectors results in a scalar quantity then
itis called scalar product while if the product of two vectors
results in a vector quantity then itis cafled vector product.

Scalar or Dot Product
The scalar product of two vectors A and B is written as A.B and is dafined as

AB=ABcosd ............counie [2.5)
wheare A and B ara the magniludes of veclors A and B and 8is

the angle between them.

For physical Interpretation of dot product of two veclors A and
B, these are first brought to @ common origin (Fig.2.2 a) then,
A.B =A(projection of B on A)

oar
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A. B = A (magnitude of component of B in the direction of A ). Fig.2.2(b)
=ABoosB) =ABcos@
Similarty, B.A= BiAcos8)= BAcos B
We come across this type of product when we consider

the work done by a force F whose poind of application r ¥
maves a distance 4 in a direction making an angle 8 with -
the kne of action of F, as shownin Fig. 2.3, F

Work done = (Effective component of force in the
dirgction of motion} x Distance maved

=(Fcos8)d =Fdcos L
Using vector notation Fig. 2.3
Fd = Fdcos 8= Work done
Characteristics of Scalar Product

1. Bince A.B=ABcosBand B.A=BAcosB=A8co0s8, hence, A.B = B.A, The order of
miulliplication iz rrelevant. In othar words, scalar product 15 commutative.

2. The scalar product of two mutually perpendicular vectors (i = 807 is zero,
A.B=ABcosa0 =0,
3. The scalar product of two parallel vectors is equal to the product of their magnitudes.
Thus for paralel vactors (=07
A.B=ABcos =A8
For antiparallel vectors (8 = 180° )
AB=ABcos 180" =-48
The self product of avector A is equalto square of its magnitude.
AA=AAcos ] = A
Scalar product of two vectors A and B in terms of their rectangular components

AB=AB +AB +AB. ..............[2T)
Equation (2.6} can ba used o find the angle between two veclors, Since,
A.B=ABcos8=AB +AE +A B,

_AB +AB, +AS,
AB

Therafore cost I {2.8)
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Vector or Cross Product
The vector product of two vectors A and B, i3 a vector which is defined as
AxB=ABsingn ... .{28) A

AXBE
where i s 8 unit vector perpendicular to the plane ,*.,T
containing A and B as shown in Fig. 2.4 (a). Itz direction
can be determined by right hand rule, For that purpose, 3 b

place together the tail of vectors A and B o defing the | B
plane of vectors A and B. The direction of the product
vector is perpendicular to this plane. Rotate the First 3

vector A inta B through the smaller of the two possible
angles and curd the fingers of the right hand in the Fig. 2.4ta)

diraction of rotation. keeping the thumb erect, The direction of the product vactor will be
along the erect thumb, as showninthe Fig 2.4 (b). Because of this direction rule, Bx A is
a vector opposite insignto Ax B (Fig. 2.4-c). Hence.

AxB-BxA

' BxA
Fig. 2.4} Fig. 2.4c) Fig. &4

Characteristics of Cross Product

|, Since AxBisnotthe same as B x A, the cross product is non commultative. sa,
AxB » BrA

2, Thecross product of two perpendicular vactors (8= 90°) has maximum magnitudes
AxB=AB sin90°n =ABnN.

4, The cross product of two parallel vectors is null vector, because for such vectars
t=0"or 180°, Hence,

AxB=ABsin'fi =0 or AxB=ABsin180°'n =0
As a conseguence Ax A=0(H=07)
4. The magnitude of A x B is equal to the area of the parallelogram formed with A and B
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as two adjacent sides Fig.2.4 (d).

Examples of Vector Product

i. Wihen aforce Fis applied on a rigid body at & point whose position vector is rfrom
any point on the axis about which the body rotates, then the tuming effect of the
force called the torque T is given by the vector product of rand F.

w=rxF
ii. TheforceFonaparicle of charge g and velocity vina magnetic field of strength B is
given by vector produci of v and B.
F=glvx B)

2.4 EQUATIONS OF MOTIONS

Equations of motion can be used o describe the motion of an object in terms of its three
kinematic vanables: velocity (v), position (s} and time (). There are three ways to pair
these variables up: velocity-time, position-time and velocity-position. In this order they
are called first eguation of motion, second equation of motion and third equation of
motion, respaciveky.

These equations of motion can only be applied to those objects which are moving in a
straghl line with constant acceleration,
Derivation of First Equation of Motion
Suppose a body is moaving with uniform accelaration along a straight line with an initial
velocity v, Let its velocity changes from initial value v, to a final value v, in time interval L.
Then the acceleration produced in fhe body dunng this time irderval is given as

PR et

I

Rearranging, we can write
v=v, = af
AT | EEAENe ¢ 0 g |
Above equation is the first eguation of motion. It comelates the final velocity attained by a
bady with initial velocity and the time interval f, whan moving with constant acceleration a.
Derivation of First Equation of Motion By Graphical Method

Firsl equation of maotion can be derived using velocily time graph for an object moving
with initial velocity v final velocity v, and constant acceleration a.

Let the velocity of a body at point Ais v which changes fa v.at paint B in tima interval { as
shown In Fig.2.5. A perpandicular BD is drawn from point B o x-axis and another
perpendicular BE from B on y-axis, such that
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04 = v = |nitial velocity of the body
BD = v, = Final valocity of the bady
From the graph if can observed that

1
%

BD=BC+CD
BD=BC +0A (AsOA=CD)
L Tirme — 3 (K]
Therefore Wy =BT s res et et e sk Flg, 2.5 Velocty-Tima Gragh

The value of BC in above equation can ba detarmined by taking the slope of line AB,
Which iz equal to acceleration a.

g 2
AC
As AC=1
S g 20
t
or BC=al........c.ecervvinn weenilie13)
Combining equations (2.12}and (2.13), we have
VW= at+w
o V.= v, +al

This is the first equation of motian,

Derivation of Second Equation of Motion

Suppose a body I8 moving with uniform accelaration a along a straight line with an initial
velocity v, which become v, after time interval f, Letit covers a distance 5§ in a parficular

direction during time ¢, then using the definition of velocity as rate of change of
displacement, we canwrile

Welocity = Displacement/ Time
ar Displacamant = Valocity x time

If velocity of the body is not constant, we can use average velocity instead of velocity.
Thus

Displacement = Average velocity x Time
_ {Final velocity + Initial velocity)

Displacement x Time
(v, + v}
st
s 5 W
Lising first equation of motion, 5= w++'+'mx {
S‘ . @j—_a:_:l ¥ r

2
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25=2vi+ar

Thizis the second equation of motian.
Derivation of Second Equation of Motion by Graphical Method

Second equation of motion can be derived using velosity-time
graph for a body moving with initial velocity v, which attainza E
final value v, in time interval f, While moving with constant 1
accelaration ait covers adisplacement 5 in lirme [,

It can be seen from the graph that distance travelled by the a
bodyis, S=vx L e —» D

Also S =Area ofthe figure DABD Fig. 2,6 Valociy-Time Graph
5 = (Area of the rectangie OACD) + (Area of the triangle ABC)
5 = (OA x OD)+ % (AC x BC)

As Of= v and 0D = AC = L 5o, above equalion becomes:
o= v,:!*-%{t x BC)

Here BC = at (From graphical representation of firgt equation of motion). By putting this
value inthe above equation, we have

S= pl4 %{t: atl

1T 8
S= ki +—=at
oz

This is the second equation of maticn,

Derivation of third equation of motion

Consider a body moving along a straight line with an initial velocity v which attains afinal
wvalue v in time & Let the displacement of the body be & during this time intenval. Thenwe
canwrite

Displacamant =( Initial ?Eﬂﬂﬁﬂ}"; Final vﬂluuii}'J Time
5 - ":"‘r;"'ll il
BRI s R T DY
Uszing the first equation of motion:
vi=w+al
= '||I'| ""Il
of t = =
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Putting the value of tin Eq. (2,15)

zs-mwr}{“;“] or iﬁwtu,+q1{“;“}

2a8 = v’ =y*
This is the third equation of motion.
Derivation of third Equation of Motion by Graphical method

In the speed time graph shown in the figure, the total distance 5 travelled by a body is
givan by the area OABD under the graph. such that

s= [Surm of parallel sides) ¥ Haight

B o= By =

5= ({DA+ BD)=0D

Sinca CAaz=y, BD=v, and OD =1
The above equation bacomes

5=1E{v,+w.:|r!

From first equation of motion,

2 ow—> D
Fig. 2.7 Velccity-Time Graph

v -V
=

b=

Putting t in above aquation
s =5l y) =)
a

or SE%{L«,-r h{-:lm_—v'}

This is the third equation of motion.

The equalions of metion are useful in solving the problems relating to linear motion with
uniformn acceleration, when an object moves along a straight line. If its direction of
mation does not change, then zll the vector guantities can be manipulated like scalars.
In such cases initial velocity s taken as positive. A nagative sign I assigned to guantities
where direction is opposite ko thal of initial velocity. In the absence of air resistance, all
abjects in free fall at the surface of the Earh, move toward the Earth with a uniform
accebaration. This acceleration is known as acceleration due 1o gravity, denoted by g
and its average value at the Earth surface is taken as 9.8 ms™ in the downward direction,
The equation for uniformally accelerated motion can also be applied to frea fall motion of
the object by replacing a by g.




Example 2.2: Acartravellingat 10ms’ accelerates uniformally ai 2 ms”. Calculaie iis
velocity after 5 5.
Solution: v=70ms’
a=2msg"
I=5s
="
uzing first equation of moticn, we can write:
w=v +al
v=10ms' +2ms'x5s
v=10ms" +10ms"
v,=20ms"

Example 2.3: A car travels with initial velocity of 15 m &7, It accelerates at a rate of
2 m 5" for 4 seconds, Find the displacement of the car.

Solution: Giventhat
r=15mg"
a=2ms”

[ =4%g
Displacemant 5=7
By using 2nd equation of motion

5=l +%E!"'
Futting the values

S=(15ms'x4s)+ %f::: ms7){16 5}

S=TEm

Example 2.4; In a short distance race, a contestant in @ car staris from rest and
reaches valocity of 300 km b, after covering a distance of 0.45 km at a constant
acceleration. Find this constant acceleration.

Solution:  Initial velocity =v =0
Final velocity = v,= 300 kmh™

e J00=1000 g
B0 = B0
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= E m 3'1
3

Distance covered = 5= 0.45 km = 0.45 x 1000 m = 450 m
Initial velocity = v =0
Finalvelocity = v,.= 300 kmh'

_ S00=1000= 250

B0 = B0
Using third equation of motion, wa have
v} = v® =2as

ma"

[% ma“] — {0 =2xax450 m
 B944.4m's”
© 800m

a=7.72 ms*

2.5 MOTION UNDER GRAVITY

A body falling freely under the action of gravity is the most familiar example of uniformly
accalerated ractilinear mation. Acearding 10 Gallio, all bodies fall frealy (in vacuum)
under the acceleration due to gravity, denoted by 'g’. Iis experimental valug i 8.5 m s in
Sl units. This means that different bodies, when allowad to fall from the same height,
strike the ground with the same velocity. As regards the signof g, itis taken positive fora

falling body {when initial velocity is zero) and negative for a body projected vertically
upward {when initial velocity |5 not zero).

The equations of motion for a freely falling bedy, on putting & =g, become
L A
:
S=h= vl +—gt*
. 29'
W= v’ =2gh

Example 2.4: An iron ball of mass 1 kg is dropped from a lower. The ball reaches the
ground in 3.34 s. Find, (&) the height of the towar, (D) the velocity of the ball on striking
the ground,

Solution: Since the ball is falling under the action of gravity, wea shall putt a =g in
equalions of motion.,

Mass of the ball m=1kq
Time taken to reach ground t = 3.34 5




M

Initial velocity v, = 0
Final velocity v, =7
Accelation s =g=98ms”
{a) Using first equation of motion:
v=v+gl
v, = 0+ (9.8 ms7) (3.34 5)
v,=32.Tms"

{b} The velocity of the ball on striking the ground, can be determined by using

third equation of maotion.
v—¥  =2gh
(32.7Tms Y -0y =2x98ms xh

_ 106928 m's” _
e | T

2.6 PROJECTILEMOTION

Uptill now we have been studying the motion of a particle along a straight line i.e., motion
in one dimaension. Mow we consider the motion of a ball, when it is thrown horizontally
from certain height, ILis obsarved that the ball travels forwvard as well as falls downward,
uniil it strikes something such as ground. Suppose that the ball leaves the hand of the
thrower at point A{Fig 2.8-a) and that its velocity at that instant is completely

horizental. Let this velocity be v. According to Newton's
first law of mation, there will be no acceleration in
harizontal direction, unless a horizontally directed force
acts onthe ball, Ignoring the air friction, only force acting on
the ball during flight is the force of gravity. Theare is no
horizontal force acting on it. S0 its honzontal velocity will
remain unchanged and will be v, until the ball hits ground.,
The horizontal motion of ball is simple. The ball moves with
constant horizontal velocity component. Hence horizontal
distanca xis given by

The vertical motion of the ball is also not complicated, It will
accelerate downward under the force of gravity and hence
& = g. This vertical mofion is the same as for a freely faling
baody. Since initial vertical velocity is zero, hence, verlical
distance y, using Eq. 2.14 is given by

j B
- o
¥ Eﬂ'

¥

Fig. 2800}

Fig. 2.8k
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I is not necessary that an object should be thrown with some initial velocily in the
horizontal direction. A football kicked off by a plaver; a ball thrown by a cricketer and a
missile fired from a launching pad, sll projected al some angles with the harizontal, are
callad projectiles.

Projectile motion is two dimensional motion under
constant acceleration dua to gravity.

In such cases, tha motion of a projectile can be studied easily by resolving it into
horizontal and verlical components which are independent of each other. Suppose that
a projectike is fired in a direclion angle B with the horizontal by velocity v, as shown in
Fig.2.8(b}, Let componeanis of velocity v, along the horlzontal and vertical directions be
v.cosl and v.sinfl, respectively. The horzontal acceleration is a, = 0 because we have
naglected air resistance and no other force is acting along this direction, whereas tha
veriical acceleration is 2 =g, Hence, the horizontal component v, remains constant and
atany fime {, we have

AR T A o RG] - |- & Interesting Information

Mow we consider the vertical motion. Tha nitial vertical “r s
componant of the velocity Is wsing in the upward
direction.

The vertical component v, at any inslant | can be
determined by conszidering the upward motion of
projechle as free fall motion g, = —g). Using 1sl
equation of motion:

¥y=visind=-gt  ....... (2.19)

The magnifude of velocily al any insiani is;

T e I

m:m:-u:gd 'm@mmmbi redeasa
; : simullaresisly fom a8 medhianism
The angle ¢ which this resultant velocity makes with the thart alows ane ball o drop fresky

wiile Eha offwd 8 [pidjected

harizontal can be found from Bl AL heye tirek T o
iy balls Are of the same level, e ther
tand = “—’ (2.21) vertical dispiacemants ar sgual
I

In projectile motion one may wish to determine tha height to which the projectile rises,
the time of flight and honzontal range. These are described below.

Height of the Projectile

In crder 1o determineg the maximum height the projectile attains, we use the equation of
mateon;
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2a8=v/—

As body moves upward, 8 = - g, the initial vertical velocity v, = v, sinfd = v as v, =0 =w,
bacause the hody comes to rest after reaching the highest point. Sinca

5 = height = h
-2gh =0—vsin'd

or h

The height of projeciia will be reduced in presence of air resistance. In the presence of
air resistance, the upward velocity of the projectie will decrease and henca its height will
also decrease during time £

Time of Flight

The tima Eaken by body o cover the distance from the place of its projection to the place
where it hits the ground is called the time of flight.

Thig can be oblained by taking S = h = 0, because body goes up and comes back 1o the
same level, thus covering no vertical distance. If the body is projecting with velocity v,
making angle 8 with the horizontal, then its verfical component will be v sinf, Hance, the
aquation of motion is!

5 1

vi+— gt
| 29‘
0= -.r,sinﬂr—%g:’

_ 2y sind
{ =g ronesmee {(2.23)

Where s the time of flight of the projectile when iLs projacted from the ground.

Range of the projectile
Maximum distance which a projectile covers in the horizontal direction is calied the

AR o

Todetermine the range R of the projectila, we multiphy the
harizontal component of the velocity of projection with
total time taken by the body to hit the ground after leaving

tha polnt of projection. Thus
R=v, xi : Range

For an angle less tham 45°, the
¥ cosh X2 v sing hegl resctut by the proectis and
g e ra wil Debess. When The

s o tosied vl o e b
= Vi I i n more:
or R= - 2sinfcosd the range I8 again ks,

or R=
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As 2sinficos B =sin2d, thus the range of the projectile depends upon the velocity of
projection and thie angle of projection.

K
Therafore, R= ':'F BINEO i 1224

For maximum range R, the factor sin 26= 1, so
26=cin' (1) or 26=90° or #=45°

Air resistance will slow down projectile forward motion, reducing its velocity v. The
reduction in v will rasult in a decrease in tha range of projectile.

Furthermore, air resistance is not constant throughout the flight of the object. As the
abject shows down, the air resistance expenenced by il also decreases, This means thal
the object retards more slowly and accelerates more slowly as it falls down, This results

in a trajectory that is not perfectly parabolic but is skewad, with steeper descent than
ascent.

Example: 2.5: A ball is thrown with & speed of 30 m 57 in a direction 30° above the
horizon. Detarmine tha halght to which it rises, the time of flight and tha horizontal range.

Solution: Initially
v, =veosB=30mexcosd0"=2588 mg
v, =v,8inB =30me"xsin30" =15ms"
A the tirma of Might, is

fn Ssing

For Your Information

S0 t = % =31 I Path

Am

B o
Height h= Y ;‘; 2 yE—

30m s')F(0.5)°
So f {195 ﬁf :I I the prasence of air friction the

2 1M trajectory of a high speed projectile
h = 11.5[11 fadfla abail of & pacabales (e

I 3

Range R= %slnﬂﬂ = %-ﬂnﬁn"

po {30m §'V x 0.BB6
= 2
9B8Bms

= B89.53m
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2,7 MOMENTUM

Ve are awara of the fact that moving object possesses a guality by virlue of which it
exerts a force on anything that tries to stop it. The faster the object is travelling, the
harder is to stop il Simiarly, if two objects move with the same velacity, then il is mora
difficult to stop the massive of the two. This quality of the moving body was called the
guantity of motion of the body, by Newton. This term is now called linear momentum p of
the bady and is defined by the redation:

b {2.25)

In this expression v is the velocity of the mass m. Linear momentum is, therefore, a
vactar quantity and has the direction of velocity, The S1 unit of momentum is kilogram
mitre per second (kg ms”' L ILcan also be expressed as newton second (N s ),
Momentum and Newton's Second Law of Motion

Consider a body of mags m moving with an initial velocity v, Supposa an axternal force F
acts upon it for time ¢ after which velocity becomes v, The acceleration a produced by

i orce is given by camn
| i |
t

By Mewton's second law, the accaleration is given as:

F
a= —
i
Equating the two expressions of acceleration, we have
F. Y=¥%
m L
Fret=mv, =mV, ..o (2.26)
where mv, is the initial momentum and mv, is the final
mameanium of the bady. R S e e S

silusfiana () or () and {hink why?
The equation (2.26) shows that change in momenium is

equal 1o the product of force and the time for which force is

applied. This form of the second law is more general than the m;ﬂmlm Eget fva

form F = ma, because it can easdy be extended to account for

changas as the body accelerates when 18 mass a!s.[:-
changes. For example, as a rocket accelerates, itI0Ses Mass your hair scls Tke o cumgle
becausa its fuel is burnt and ejacted 1o provide greater thrust. zone on your skull A force of

584 migght be enough iofractune

From Eq. (2.26) iV = TV your naked skull (craniom], but
[ i

Fm—t ok wilh 2 covering of skin and hair,

a force of 50 N would ba

Thus, second law of motion can also be slated in terms of R

momantum 85:
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Time rate of change of momentum of a body is equal to the applied force.

Impulse

Sometimes we wish to apply the concept of momentum o cases where the applied force
i5 not constant, it acts for very short imea. For example, when a bat hils a crickel ball, the
force certainky varies from instant to instant during the collizion. In such cases, it iz more
convanient to deal with the product of force and time (F x ) instead of either guantity
alone. The product of avarage forca F that acts during time tis called impulse given by

Impulse= Fx = mv, =AT% ....cciiiinn (2.27)

Example: 2.6: A 1500 kg car has its velocity reduced from 20m 8" to 15ms " in 3.0 8.
How large was the avarage ratarding forca?

Solution: Usingthe Eq. (2.27)

FI! = ﬂ'I"H'.—J'I'T"!',
Fx30s= 1500 kgx 15ms’' = 1500 kg% 20 m &”
or F =—2800kgms”

==2500N= =2.5kN

The negative signindicates that the force is retarding one.

Law of Conservation of Momentum g o

Let us congider an isolated system. It (2 a systeam ——F —F
on which no external agency exerts any force. For O
example, the molecules of a gas enclosed in a
glass vessel at constant temperature conslitute an
isolated system. The molecules can collide with
one another becausa of their random motion, but

being enclosed by glass wvessel, no external m
agency can exarl a forca on tham,

Consider an isolated system of two smooth hard

it i

interacting balls of masses m, and m,, moving v v
along the same straight Ene, in the same direction, et |
with velacities v, and v, respectively. Both the balls O 0

collide and after collision, ball of mass m, moves
with velocity v vand m, moves with velocity v in
the same direction as shown in Fig, (2.9).

To find the change inmomentum of mass m,, Fig. 2.9

Using Eg. (2.27) as:
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n
e
F=t=myv,- my, Do You Know?

Similarly, for the ball of mass m,, wa hava

Flst=my - my,
Adding thess Iwo expressions, we have

(F+F 1t = (my, = mu )+ (mvt=mw,)
Sinca the action force F is equal and opposita o the

reaction force F, we have F' ==F, or F4F' =0 zothe
left hand side of the equation is zero. Hence,

VWhen a moving car gtops quickhy
the passengars move forward
O= {myv=mu, |+ (mzu!' - mz""z-] iowards the windshisld, Sealbalts

changa the forcas of motlon and

In otherwords, change in momentum of 1stball+ change ' prevent the passengers from

in mementum of the 27 ball is 2o, moving. Thug, the chance of injury

l= groatly reduced,
o (my+my,) = (MY ML) ... (2.28)

Which means that total initial momentum of the system before collision is equal to the
total final momentum of the system afier collision. Consequently, the total change in
rmarmantum of the isokatad two ball system is Zaro,

For such & group of objects, if one object within the group experences a force, there
must exist an equal but opposite reaction force on othar object in the same group. As a
result, the change in momentum of the group of objects as a whole is always zero. This
can be axpressedin the form of law of conservation of momentum, which states that:

The total linear momentum of an isolated system remains constant.

In applying the consensation law, we musi notice that the momentum of 2 body is a vector
quantity.

Example 2.7: Two spherical balls of 2.0 kg and 3.0 kg

masses are moving towards each other with velocities of
60 m s and 4 ms’, respectively. What must be the
velocity of the smaller ball after colksion, if the velocity of
the bigger ballis 3.0ms™?

Solution: Az both the balls are moving fowards one

another, so their velocities are of opposite sign. Let us

supposa that the direction of motion of 2 kg ball is

positive and that of the 3 kg is negative.

The momentum of the system belore collision is: Krikachins Ruinty kot
my, tmy, = 2kgx6ms’+3kg=(=4ms’) Paed 50 a5 lo exdend e

Lirrye af any collision 1o predvan
= 12kgms'—12kgms =0 serious injury.
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Momentum of the system after collision = my] +mw
=2kgxvi+3 kg« (-3)mg’
Fram the law of conservation of momentum
[I-hmnﬂ.lm af the s',lstan'ﬁl anman'lum of the srstem]

before collision 17 | after collision
0 = Zkg=v;- Gkgms''
v = 45ms’

28 ELASTICANDINELASTIC COLLISIONS

When iwo tennis balls collide then, after collision, they will rebound with velocities less
than the velocities before the impact, Dunng this procass, a portion of K.E. is lost, parthy
due to friction as the moleculas in the ball move past one anothar whan the balls distort
and partly due to its change into heat and sound energies.

A collision in which the K.E of the system is not
conserved, is called inelastic collision.

Under cerain spacial conditions, no kinetic energy is lost in the collision.
In the ideal case when no K.E is lost, the collision is said to be perfectly elastic.

For exampla, when a hard ball is dropped onto a marble floor, it rebounds to very nearly
the inifial height, floses neglgible amount of energy in the collision with the floor, Hisio
be noted that momeanium and total energy are conserved in all types of collisions.
However, the K.E. is conzerved only in elastic collisions. - &
Qo
m m

Elastic Collisions in One Dimension 6
Before collision

Consider iwo smooth, non-rotating balls of masses m, and
m, moving initisdly with velocities v, and v, respactively, in
the sama direction. Thay collida and after collision, thay

move along the same skraight line without rofation. Let their

velocities after the collision be v and v5 respectively, as vi v,

shown in Fig.(2.10). o

We take the positive direction of the velocity and momentum O Q

to the right. By applying the law of conservation of m. i,

mamenium we hava After collisian
MV, + MV, = mvt mov; Fig. 2.10

M=) = T (V=) e (2.29)

As the collision is elastic, so the K.E. is consenved, From the conservation of K.E
wi have




M

%m,u,i + %mzvf = %mﬁ’ * %mzl-'f
ar my v, —v)” = m, e - ')
ar mv v v = mdvl S )iw=v) {2.30}
Dividing Eq. (2.29) by (2.30)
LA (T T D {2.31)
o (¥ = W) =(v = )= =¥ - v)

We naota that, before collision (v, — v, ) is the velocity of first ball relative to the second ball,
Simifary (v, —v'.} is the velocity of the first ball relativa to the second ball after collision. It
means that relative velocities before and after the colksion has the same magnitude but
are raversed afller the collision. In other words, the magnilude of relative velocity of
approach is equal to the magnitude of relative velocity of separation.

In equations (2.29) and (2.30) m,, m,, v, and v, are known quantities, We solve thesa
equations to find the values of v, and v, whichare unknown. The results are

M= m 2m, case (i)

o= ——Ly o+ Vo sl da32)
m, + m, m, + m,

1 ——l-
'||'; - 2I'|'1| u.1 o+ mﬂ ml 'U' ‘p 33] é

Hﬂfﬂl‘ﬂ Eﬂlllﬁﬁun

'||.-""l'

There are some cases of special interest, which are discussed below:;
O When m=m 0 O
From Eq.(2.32)and {2.33), we find that

Aﬂ-r n:li:unn
@ =i Fig. 2.11
i
- W o=y, {as shown in Fig. Z,11) ETE ’

] When m,=m,andv,=0 O O

In this case, the mass m, be &t rest, and v. = 0, then

Enqs. (2.32) and (2.33) give Balors colishan

vi =0 7 ¥ =Yy |=' ¥,
When m, = m, then ball of mass m, after collision will come to a O 0
stop and m, will take off with the velocity that m, erginally had,
as shown in Fig.(2.12). Thus when a billiard ball m,, moving on After colitelon

Fig. 2.12




a table collides with exactly similar ball at m, at rest, the
ball m, stops while m, begins to mowve with the same
walacity, with which m, was moving initialhy.

(iil} When a light body collides with & massive
body atrest

In this case initial velocity v, = 0 and m>>m,. Under these

conditions m, can be neglected as compared lo m. From

Eq.{2.33)and (2.32)wa hava v, ==y andv.' =0,

The result is shown in Fig.{2.13), This means that m, will

bounce back with tha same velocity while m, will remain

stationary. This factis used of by the squash player.

[iv]) When a massive body collides with light
stationary body

In this case m >=m. and v, = 0, s0 m, can be neglected in
Eqs.(2.32) and (2.33). This gives v = v, and v', = 2v_
Thus after the collision, there is praciically no change in
the velocity of massive bady, but the ighter ona bounces
off in the forward direction with approximately twice the
velocity of the incident body, as shownin Fig.(2.14).

(q‘l:’—l}h,_,."@ iatlon and Fores |.
L . =

casa (i)
W, w =0
—
o Q
i, -
Before collision

:
W oW ey w. =0

e 9

mﬂ
After collision

Fig. 213
case (iv)

Fig. 2.14 Adtar caoliision

Example: 2.8: AT0 g ball collides with another ball of mass 140 g. The initial velocity of
the first ball is 8 m & o the right while the second ball is at rest, If the collision were
parfecily alastc. What would be the valocity of thes two balls after the collision?

Solution:
m.=70g v,=8ms'  w=0
m=140g v =7 w'y=7
We know that:
L
m; + m,
= m}rgmf’=_3mf'
T0g+140g
W= 2Py
m, + m,

{45—2}{70 ] % 9ms”

Tog+140g
gmg’
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2.9 ELASTIC COLLISION IN TWO DIMENSION

When two bodies travelling along an axis do not end up 1
traveling abong the same initial axis after colision, then it ¥,
is 8 case of iwo-dimensional collision. When the collision ;
is elastic, the syslem of bodies conserves both its total m, ,
linear momentum and total kinetic energy. ———————— | "

v, ii
Consider two bodies colliding elastically at a certain i ‘<\
glancing angle, showirg that the collision is not head=on. ;\‘
Let m, be the mass of the first body (projectile) moving
with initkal velacity v, and m, is the mass of the bosdy Fig. 2.15

second (target), which is initially at rest, v, = 0. As the two bodies collide together, the
impulses generated between them, send these bodies off at angles 6. and 6, to the x-
axls, along which the projectila initially travedled.

Anelastic collision that is not a head-on collision between two bodies,

Initially, the body with mass m, (larget), is al rest.

Conservation of Momentum

The initial momentum of projectile before collision is m, v, while initial momentum of
target before collision is zero, The final momentum of projeciile having mass m, and
welocily v, after collision is m,w,. The final momantum of target having mass m, and
velacity v, after collision s m.v,. Resolve final momentum of projectile into components

m,¥, cosd, and m.v, sind. Similarly, resolve the final momentum of target inlo
components m,v, cosi. and m v, sind._

hMomentum conservation along x -axis is;

Momentum before collision = Mementum afler collision
mV, = MV, COSH, + MW, cos8,
mw, —my,costh, = MLV C08, o [2.34)
Maomentum conservation along y-axis is:
Momentum before collision = Momentum after collision
g = T W SR, - v, Bind,
¥, zing, = b T RE Y R R R [2.35)
Conservation of Energy
In = Imd e lng
my; = R L o v - {2.36)
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Analysis of the above equabon Interasting Information

reveals thal “-'IEIE are four Borme of the kinetic emergy is transfemed Into ofer forms such as
unknown quantities, v, vy, B, haal, scund, and deformation In Inelastic collislon. For exampls,
@, If these guantities can be thecolision is inefastic if a bullet is fired into a block of wond, This s
measured, conservation of becsuse some energy of ihe bullet i8 losd in the ki of seund and
mEsmentum and En.&rgljr Ptz ] bﬂ' haat. E"I"I.-H'I]'. ifa hﬂlﬁﬂmmﬂﬂm{mﬂmh mlﬂ'ht.ll
: - doas nof mebound to the same height because its Kinedic snargy i
m;ni?EEEUEWH (234, laatin other korms of energies, like sound energy and haat energy,

2.10 INELASTIC COLLISION IN ONE DIMENSION
Consider two bodies hml'ln;g Masses m, Batorn collinnn m,

and mr, moving with velocities v, and v, = ¥, ¥,
glong the same line such that v, > v, In O_' ( >_'
such a case m, is regarded as projectile

and m, as targel. After time f both the T

bodies make inelastic collision and stick
tegether. Let their combined mass

become M, + m, which moves with final
velocity v, after collision, Fig. 2.16

Since the collision iz perfectlyinelastic, the total momentum of balls is conserved, Using
law of conservation of momantum.

Total momentum of system before collision = Total momentum of the system afier collision

M, + myvy, = (m, + my v,

I+,

m, m,

¥, = LiTh
m, + i, m, +

Ya

Which gives the common velocity of the body afierinelastic collision.
In a spacial case when the targal m, is al rest, v, =0, the above aguation bacomas:

e L B (2.37)

i+ 1,
It shows that velocity of m, is reducad by the mass ratio of m, i.e., My The larger
the mass of m,, the faster the combinalion maoves. ity ATy

Let us investigate the kinefic energies of bodies colliding inekastically, The sysiem's
kinatic energy bafore collision is:

1 1
(KE), = Smyj + Zmy]

Kinetic energy of combination after collision.
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1 :
(K.E);, = Em + I v

The fraction of kinelic energy is lost in melaskic collision

j 2 1 o 1 1 B

(K.E), — (K.E), _ ._-2 vy, * Emz-l'"z:J 2[!‘]‘?1 + m, v
{K.E} 1 p 1 & T
g+ g |

Futtirg the value of v, from Eg. {2.37)

1 8 ok I i, 2
(K.E), - (KE), _ [Enw.. g MYy | 2{mﬁ rr1';.l!-mI = ma-l ¥
S Hm.v.-i + %w*i.}

Again if we consider a special case, |.a., if the target m, is at rest (v, = 0), than upan
solving the above equafion, we have

I'H-EL = m"E}r = L
[K.E), m,+ m,

This is the amount of kinetic enargy lost during inelastic collision, From the forgaing
analysis, tis clear th&mnap_m' Iz lost duning an inelastic colision in one dimension,
2.11 INELASTIC COLLISIONIN TWO DIMENSIONS
Tha macroscopic collisions are ganarally inelastic and do nol conserve Kinelic anergy.
The perfect inelastic collision is one in which the colliding objecis stick together to make
a single mass after collision, its analysis can be carned out as follows:
Let us take two rigid bodies having :
masses m, and m, moving with velocities, ¥
v, and v, respectively, in a two-
dimensional xy-plane. Assume that the “‘.‘l v %
first body is moving along the x-axis while T T
the second body moves in a direction, e
making an angle B with x-axis, Both the ¥
bodies collide al the origin as shown in
the figure 2.17. Fig. 2.17

After collision, bodies stick together, having combined mass M = m, + m,, which movas
with velocity v, making an angle ¢ with x-axis. Mow resolve v, inlo rectangular
components v, sinB and v, cosf, Also resclve v, into components v, sindg and v, oosi,

Momentum in the X-direction:

L

my, cosd + my, cosh, = Mv, cosd. ... {2.39)
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Momaentum in the y-direction:

miy, SN, + M, Sink, = My Sing .. (2.40}
Solving for Final Velocity and Angle
Magnitude of Final Velocity v;:

The magnitude of the final velocity v, can be found by sguaring and then adding
equations (2.39) and {2.40).

_ (| My, cost + myy,, cosil, E'_l_ my,, sind, + mv, sind, =
v, J[ Hy 090 TR S | - g — Tt

Final Angle g:
The angle ¢ of the final velocity v, relative 1o the w-axis is cbtaived by dividing the
equations (2.40) by (2.41);
,,_J' — mn-‘r [*“1"1;5{“5':* m&‘“mﬁnﬂi-] Fu}
ﬂll'i"." mﬂl‘ . mz""'aums'}a
Heare ¢ is the direction of commaon velacily of two badies with x-axis which stick logether
after inelastic collision. Substituting the value of m, , M, M, 0, &, & and v, vy, ¥ iN

equations (2.39) and (2.40), the law of conservation of momentum in above case can be
prowved.

Kinetic Energy

Since colision is inelastic, the kinetic energy of colliding system is not conserved. The
Ioss of Kinetic energy is computed as fallows:

Initial Kinetic Energy
The totalinitial kinetic energy K. E of the system before the collision is:
(K.E), = %mﬂ.ﬂ + %mtvj] ............. {2.43)
Since K.E. is a scalar quantity, so velocities involving in the formula of K.E. does nat
reqjuire to break valocities into thelr components.
Final Kinetic Energy
The total final kinetic enaergy K.E, after the collizion (when the objects stick together) is:

(KE), = :—,va ............. (2.44)
where v, is magnitude of the final velocity which can be calculated from Eq. (2.41).
Energy Loss inthe Collision
Since the collision is inelastic, there iz a loss in kinetic energy, represented by AKE.
AKE, = (K.E),- [KE.),
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This lost kinatlc energy is transformed into other forms of enargy, such as heat, sound, or
deformation.

Using the parameters m,, m,, M, and v, v, ., v/ in equations (2.43) and (2.44), we can
calculate the kinetic energy before and after an inelastic collision and detenmine the
amount of energy lost,

Some examples of an inelastic collision:

(i) When a karate chop breaks a pile of bricks, it's an exampla
of an inelastic collision. In this type of collision, the objects
imvolved don't bounce back afterimpact. Instead, some of
the energy from the sirike is absorbed by the bricks, lurning
Into heat, sound, and the force needed to break them. This
means the energy goes into breaking the bricks rather than
causing the hand to rebound. If the Karate chop is not
perfectly vertical and involves some horizontal motion, the
momentum transfer and the resulting forces will have both
horizontal and verfical componants,

(i) In @ car crash, the collision is an inelastic in both the '
horizontal and vertical directions. When the vehicles
collide and absorb the impact energy, causing them o |
crumple and deform, This energy absarplion slows dawn
the cars, stopping them from bouncing back. Most of the
kineftic energy is kast, tuming into heat, sound, and damage
lotha vahiclas,

(i) In real-world collisions, a ball and bal show an inelastic
behavior, When the bat hils the ball, some of the kinalic
energy is lost because the ball deforms, and energy is also
converted into heat and sound, Even though the bat is
rigid, I doasn't ransfar energy parfectly and absorhs soma
energy itzelf. The ball compresses upon impact, which
leads to further energy loss, Consaguently, not all of the
initial kinetic energy is conserved, making the collision
overall aninelastic,

2.12 ROCKET PROPULSION Fi- 419

Rockels move by expelling buming gas thraugh mmpm&mmlm

engines at their rear. The ignited fuel turns to a high exhaist the chamber at avery high

e : 2 yelocity. The gain in momentum of
pressure gas which is expelled wilh extremely high st sdailieiip i
val_ﬂclr,r from the rocket engines (Fig. 2.18). Therocket  oomantum of the rockel. The gas
gains momentum equal fo the momentum of the gas  &nd rocket push sgainsl each othar

expelled fram the engine but in oppasite direction. The &nd mava in opposite dractions.

fuel
(hguid
Fydragen)

liqued
cEygan

SimEuaten
chamber
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rocket engines continue o expel gases after the rocket has begun moving and hence
rackel continues to gain more and more momentum, So, instead of travelling at steady
speed the rockel gets faster and faster so long the engines are operating.

Arocket carries its own fuel in the form of a liquid or solid hydrogen and oxygen. It can,
tharafore work at great helghts whera very lite or no alr is present. In order 10 provide
enough upward thrust fo overcome gravity, a fypical rocket consumes about 10000 kg 5™
of fuel and ejects the burnt gases at speeds of over 4000 m ™. In fact, more than B0% of
ther launch mass of a rocket consists of fusl only. One way to overcome the problem of
mass of fuel is to make the rocket from several rockets inked together,

When ona rocket has dona its job, it is discarded leaving others 1o carry the space craft
further up at ever greater speed.

It r is the mass of the gases ejected per second with velocity v relative 1o the rocket, the
change in momentum per second of the ejecting gases is mv, This eguals the thrust
praduced by the engine on the body of therocket, So, the accaleration "a’ of therocketis

my
e 1. .
a " (2.42)

whare M iz the mass of the rocket. Whan the fuel in the rocket s burned and ejectad, the
mass M of rocket decreases and hence the acceleration increases,

Example 2.9: A partide 'A' of mass 1 kg is moving with initial velocity 5 m s towards
right collides with stationary target ‘B’ of same mass at rest. After coflision the particle 'A’
moves at an angle of 30° above horizontal with a speed of 3 m & and particle '8' moves
with the horizontal at an angle of 53" with a speed of 4 m 2", Prove that collizion iz elastic
ir matura.
Solution:
Initial mementum =mw, + my,

=f1kpxEmeg J+{(1kgxOms')=5kgms’
Final momentum in x-direction = m, v, + m,

=(1kgx3ms’ xcos307) + (1 kg xd m s xcos53)

= 260kgms’ +240kgms”
= Skgms'

As momentum is consarved in x-direction, therefore,
1 1
(KE) = 5 my, * Em!u;




=y 1 =
= if 5 | xi_ﬁf} l-l[ix'lxﬂ_]- 12.54

1 1 1 1
(KE), = gmyy + 5my =5 x1x(3F]+ (5= 1x(4))

=45+8=125J
As both momentum and K.E. are conserved, indicating that eollislon s elaste.
Example 2.10: A projectile of mass 2 kg is moving with an initial velocity of 4 m 5"
bowards right and hits the target al rest of mass 3 kg, alter collision the two masses stick

together and move as single body with a velocity of 1.6 ms™. Show law of conservation of
momentum and energy losses during perfect inelastic collision,

Solution:  nitial mamentum in x-direction
Pil = mlvﬁ' * mi‘?.!‘.h' .ﬁ.ﬂﬂ‘ = ﬂ
= (2kg*4me') + (3kgx0)= 8 kgms'
Asthe combined mass is M=m,+m:=2kg+ 3 kg =5kg
and the final velocity I8 vw=1.6 ms"

Final momentum is
Mvu=5kgx16ms =8kgms’

Initial K.E. = %m,r,,“ + -;-mzr,,“

; <2kgx(dms'] r%:-: 3 kg %0
Bkgm's*+0=16.

Final K.E.

KE, o= %{m, + m, v

= %uﬁhg.xﬁ.ﬁma"}?m BAkgm's” = 64

Energy Loss =KE. . - KE..
=16J-64J=96J

This is valid example of a perfectly inelastic collision in 20, where the two bodies
stick tngather after collision showing that momantum |5 consarvad but kinetic anargy
is losl.
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|§ Multipie Choice Questions |

Choose the corect answer:
21 The angle at which det produc! becomes equal (o cross produck:

{a) 65" {b) 45° () 76" () 3o
2.2 The projeclile gains s maximum heighl at an angle of;

(@) 0" {b) 45° (c) 60" (d) 20
2.3  The scalar preduct of two veclor is maximum il thay ara:

{a) perpendicular (b} parallel {c) at30° {d) at45

2.4 The range of projectile is same for two angles which arae mutually:
(a) perpendicular (b} supplementary
) complementary {d) 270°

5 The accabaration at tha top of a rajectony of projectla is:

{a} maximum {b} minimum (c) zero d) g
256 Sl unit of impulse s
{8} kgms" (b} Nm {c) Ns id) Nm’
27 Ihe ate of change of momentum s
1a) force ib) impulse (c) acceleration (d) power
2.8 As rockel moves upward during s jourmay, than its accelaration goss on:
{8} Increasing (b} decreasing

(e} remains same  {d} it moves with uniform velocity
2.8 Elastic collision involves;

{a) loss of energy

{b) gain of energy

{ch no gain, no loss of energy

{d} no refation between anargy and elastic collision

|] Short Answer Questions F
2.1 State right hand rule for twe vectors w.r.l. veclor preduct,
2.2 Define impulse and show how it is related to momentum.
2.3 Differentiate betwean an elastic and an inelastic collision.

2.4 Show that rate of change in momentum is equal to force applied, Also state
Newlon's second law of motion in tarms of momentum.

2.5 State law of consenvation of linear momentum. Also state condition under which it
holds,
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2.6 Show that range of projectile iz maximum at an angle of 45",

2.7 Find the time of flight of a projectile to reach tha maximum height.
2.8 The maximum horizoental range of a projectile is 800 m. Find the value of height

2.1
2.2

2.3
24

25
2.1
2.2

2.3
2.4
2.9

2.6
2.7

2.8

2.1

2.2

attained by the projectile al #= &0,
|§ Constructed Response Questions ||
Why does a hunter aiming a bird in a tree miss the target exactly atthe bird 7

& person falling on a heap of sand does not hurl more as compared 1o a parson
falling on & concrete floor, Why?

State the conditions under which birds fly in air

Describe the circumstances for which velocity and acceleration of a wehicle are:
{iy v is zero but a is not zero

(i) a is zero bul v is not zero

{iid) perpandicular to one another

Describe briefly effects of air resistance on the range of a projectile.

@] Comprehensive Questions

Define and explain scalar product, Write down its important characternistics.
Define and explain vector product of two vectors, Discuss important
characteristic of vector product.

Derive three equations of motion by graphical method,

What is projectile molion? Explain.

Derive the following expressions for projectile motion:
(i lime of Night
{if) height atiained

fiil} range for projectile,

Explain elastic collision in one dimension. Show that relative velocities before
and after collision are the same,

Darive the aquations for momeantum and enargy consenvation in a two
dimensional coflision.

Explain an inelastic collision in two dimension,

| Numerical Problems |

The magnitude of cross and scalar products of two vectors ared /3 and 4.
respactivaly. Find the angle between the vactors. {Ans: BO')
A helicopter is ascending vertically at the rate of 19.6 m 57, When it is at a

height of 156.8 m above the ground, a stone is dropped. How long does the
stone take to reach the ground? (Ans 8.0 8)
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2.3

2.4

2.6

2.7

2.8

29

2.10

If ja+8| = jA-Bj then prove that A and B are perpendicular to each other,
[Ans, § =807
A body of mass M at rest explodes info 3 plieces, two of which of mass M/ 4 each
are thrown off in perpendicular directions with velocities of 3 m &" and 4 m &”
respectively. Find the velocity of 3rd piece withywhich it will be flown away.
(Ans: 2.8 ma", opposile o resullant velocity vactar of two piecas)
Acricket ball is hit upward at an angle of 45" with velocity of 20 m s, Find its:
(&) time of flight (b) maximumheaight () how far away ithits tha ground
(Ans 2.8 5 41 m, 10.2m)
A 20 g ball hits the wall of a squash court with a constant forca of 50 M. If the time of
impact of force is 0.50 5, find the impulse. (Ans: 25N )
A ball is kicked by a foothaller. The average force on the ball is 240 N, and the
impact lasts for a imeinterval of 0,25 5. Calculate:
{a} changeinmomentum
(b} slale direction of change in momentum (the direction of change in
momentum ig the same as the direction of applied force, which is the
direction, the footballer kicked the ball) (s B0 N)
An aeroplana moving horizontally at a spead of 200 m s~ at a haight of 8 km to drop
a bomb on a target. Find horizontal distance from the target should the bomb be
releasad. [(Ans: .08 Km)
Why does range of a projecile remain the same when angle of projection is
changed fram @ to 6 = 80 - 0, Alse show thal for complementary angles of
projection the ratic B/R s equalio 1.



Afiter studying this chapter, studants will bs abbs to:

= Exgwessanghes inradens

Defing and calculate angular displacement, angudar velocity and angular acceleration [Ths immlvas
ussal S=rh, Verm.m® 2 (T a= 00k, and a =T o solve problams)

Uize equations of angular mation mnulvapruhlumalwﬁluhu rotalionad motons.

Discuss qualitatively molion in a curved path due boos perpendicutar foree.

Define and calculats centripetal force [Use: K = mra®, Fr = m |

Analyze situafions involving circular motion in terms of centripetal foroe [e.g. siluations in which
centripetal accalemlbon |s cassed by a lension force, a Mellonal force, & grawtalions forse, or a
normal forze.]

Preline and cabodale average orbital spaad fora satelibe. [ram e soquation v = 2or/ Twhens fis the.
average radius of thearbitand T |5 the orbit period; apply this equaton 1o solve numercal problams|

Explain why thi objects in oriling sabelites appear o be waighlloss,

Describie hiow anifcizl grevity |s craatad to counser walghtasanes s,

Dipfine and caloulale momenis of nertia of a body and angular maomanbum,

Dierive and apoly the ralathon bebwesn orgue, moment of inertia and anguler acceleration. (istrate
the applications of conesarvation of anguiar momentuem inoreal e, [such as by flywhaals to sioma
rotaficnal enargy, by gyroscopes m ravigation systems, by ice skabers h-rdimr_tﬂ-éhhgdh velocity]
# Desoribe how acentrifuge Is used to separate meterials using centripetal force

> & 0 W

ﬂmnng all possible motions of the material bodies, the circular maotion is one that
appears fo be working in the most of the natural world. Satellites moving in circular orbits
around the Earh, orbital and spin motion of the Earh itself, & car turning around a
curved road, and a slone whirled around by a string are the familiar exampbas. Whean
objects move in circular paths, their direction is continuously changing. Since velocity is
a vector quantity, this change of direction means that thair velocities are not constant.
In this chapler, we will study, circular molicn, retational motion, moment of inertia,
angular momentum and the related topics.
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3.1 ANGULAR MEASUREMENTS

Consider an angle drawn at the centre "0 of & cirdle by an arc "ABR’ ‘A
as shown in Fig. 3.1, If the length of the arc 'AB’ is equal to the

radius T of the circle, then the angle is called one radian. fisthe 31

unit of angular measurement and |15 symbolis “rad”.

A

Fig. 3.1
Angular Displacement
Consider the motion of a single particle P of mass m in & circular path of radius r,
Suppose this motion is laking place by attaching the particle P at the end of a massless
rigid rod of length rwhose other end is pivoted at the cenire O of the circular path, as
shown in Fig, 3.2 (a). As the particke is moving on the circular path, the rod OP rotates in
the plane of the circle. The axis of rotation passes through the pivot O and i2 normal to
the plane of rotation. Consider a system of axes as shown in Fig. 3.2 (b). The z-axis is
taken along the axis of retaton with the pivol O as origin of coordinates. Axes x and y are
taken in the plane of roiation, While OF is rofating, suppose at any instant £, its position is
0P, making angle B with x-axis_ At a later time { + AL lat its position be OF:making angle
B+ Afwith x-axis (Fig. 3.2-C). ]

s

B

S

P

..I'
™
K

Fig- 3.3a) Fig- 32b) Fig. 32|

Angle Al defines the angular displacement of OP during the time interval AL
For very small values of Af, the angular displacement is a vector quantity.

sanse of rotation of OP s counter clock wise,

The direction associated with At is along the axis of rotation and is
given by right hand ruba as shown in Fig 3.2 (d) which states that:

Grasp the axis of rotation in right hand with

The angular displacement All is assigned a positive sign when the i

He

fingers curling in the direction of rotation; the s
thumb points in the direction of angular
displacement. Fig. 32001

Threa units are generally used to exprass angular displacement, namely degrees,
revolution and radian. Consider an arc of length 5 of a circle of radius r{Fig. 3.3) which
sublands an angle 0 at the centra of the circla. Its value in radians (rad) is given as:
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e
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or S=r@ (where is in radian) ... (3.1)

If OP is rotating, the point P covers a distance 5§ = 2 arin one
revolution of F. In radian, it would be;

- ——g
r r
S0 1 revolution = 2 = rad = 380°
a
ar 1rad - 3""'”“ =57.%°

Angular Velocity

Very often, we are interested in knowing how fast or how slow a body is rotating, it is
determined by its angular velocity defined as the rate at which the angular displacement
is changing with fime. Referring o Fig, 3.2{c), if Alhis the angular displacement during
the time intarval Al the average angular velocity o, during this intarval is givan by

Al
Wy =— 3.2
i (3.2)
The instantaneous angular velocity o is the imit of the ratio AWWAL as Al, approaches to
2arn,

Thus w = Lim A8 (3.3)
ar»n Al
in the limit when At approaches zero, the angular displacement would be infinitesimally
amall. So, it would be a vector quantity and the angular velocity as defined by Eq. 3.3
would also be a veclor, Its direction s along the axis of rotation and is given by right hand
rule as described earier.

Angular velocity is measured in radians per second which is the Sl unit.
Sometimes it is also given in terms of revolution per minute (rpm).

Angular acceleration

Whenwe switch on an electric fan, we notice that its angular velocity goes on increasing.
We say that it has an angular acceleration. We define angular aceeleration as the rate of
change aof angular velocity. If o and w, are the values of instantaneous velocity of a
rotating body at instants ¢ and ¢, , the average angular acceleration during the interval
{— 115 given by
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The instantaneous angular acceleration is the limit of the mtio %’ as At approaches

zaro. Therefore, instantanecus angular acceleration o is givan by

M
B=Llim=— | e 35
AL (3.5)
The angular acceleration is also a vector quantity whose magnitude is given by Eq. 3.5
and its direction is slong the axis of rotabion, Angular acceleration is expressed in rad 57,

Till nowe we have been considering the motion of a pariicle P ona circular path. The point
P was fixed at the and of a rotating massless rigid rad. Now considar the rotation of a
rigid body as shown in Fig. 3.4. Imagine a point P on the rigid body. Line OP be the
perpendicular dropped from P on the axis of rolation usually 1%
refermed as the reference line. As the body rotates, line OF also
rotates with the same angular velocity and angular acceleration.
Thus, the rotation of a rigid body can be described by the
rotation of the reference line OF and all the terms that we
defined with the help of rotating line OF are also valid for the
rotational motion of a rigid body, Henceforth, while dealing with
rotation of a rigid body, we will replace it by its reference ling OF.

Relation between Angular and Linear Velocities

Consider a ngid body rotating aboul z-axis with an angular
valocity m as shown in Fig. 3.5(a).

Imagine a poind P in the rigid body at a parpendicular distanca 5
from the axis of rotation, OP represents the reference line ofthe
rigid body, As the body rotates, the point P moves along a circle
of radius rwith a linear velocity w whereas the line OP rotates
with angular velocity w as shown in Fig. 3.5 (b). We are
interestad in finding out the relation batwaen o and ¥. As tha
axis of rotation is fixed, so the direclion of o always remains the
same and o can be manipulated as a scalar. As regards the
linear velocity of the poimt P, we consider its
miagnitude cnly which can also be treated az a scalar,

PP=4A8

Supposea during the course of its motion,

the point P moves through a distance P,P,

=AS i a time interval Al during which
reference line OF covers an angular

displacement AB radian, So, AS and Af

are related by Eq. 3.1as: 1ere
Az the whesl furms frough an angle i,
AS = rag dlays out 8 tangential distance S=ri.
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Dividing both sides by Af Polnt to Ponder
AS  AB e
=f —

=—=fe— s 3.6
At At 5

In the limit when Af —» 0 the ratio AS{AL represents v, the
magnilude of the velocily with which point P is moving on
the circumference of the circle. Similarky AD/AL represenis :
the angular velacity w of the referance line OF. So, Eq. 3.6 ;?”r;'ﬁ:ff fgggﬁ“g 1?:1“ m‘;
becomes: amusemenl parks bul you
. never tall down even when you
ki S are upside dawn. Why?
From Fig. 3.5(b), it can be seen that the point P is moving along the arc PiPz. In the limit
when Ar — 0, tha length of arc P1P: bacomas very small and its diréction reprasants the
direction of tangent to the cncle at point P, Thus, the velocity with which point P is
micwving on the circumferance of the circle has a magnitude v and its direction is always
along the tangent o the circle at that point. That i why, the linear velocity of the point P is
also known as tangential velocity,

Similarly, Eq. 3.7 shows that I the reference lne OF is rotating with an angular
acceleration o, the point P will also have a linear or langential acceleration a,. Using
Enq. 3.7 it can be shown that the two accalerations are related by

;= (3.8}

Egs. 3.7 and 3.8 show that on a rotating body, points that are at diferent distances from
fhe axis do not have the same speed or acceleration, but all poinis on a rigid body
rotating about a fixed axis do have the same angular displacement, angular spead and
angular acceleration at any instant. Thus, by the use of angular variables, we can
describe the motion of the enfire body in a simple way.

Equations of Angular Motion

The equations (3.2, 3.3, 3.4 and 3.5) of angular motion are exactly analogous to those
in linear motion if 8, w and « be replaced by 5, v and a, respectively. As the olher
equations of linear mofion were obtained by algebraic manipulation of these equations,
it follows that analogous equatons will also apply o angular motion. Given below are
angular equations together with their inear counterparts.

Linear Equations Angular Equations
V= + at Wy =00 o] o (3.9}
2a5= v’ - r,g febeal o s (3.10)

5‘=wf+% at? a=m,r+% o (3.41)
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The amngular equations 3.9 1o 3.11 hold true only in the caze when the axis of rotation is
fixed, so that all the angular vectors have the same direction. Hence, they can be
manipulated as scalars,

Example 3.1: An electrc fan rotating st 3 rev 57 is switched OFF. |t comes to restin
18,0 5, Assuming decaleration lo be uniform, find its value, How many revolutions did it
turn before coming torest?

Solution: In this problem, we have

o =30rev &', ®=0, [=18.0c and ¢=7? ,6 6=7 .--"":——r
From Eg. 3.9, we have \-

g =3.0)revs’ \

e - =z ¥
a : 1805 0167 rev s hs

and from Eq 3.11, we have /
1 A

Do You Know?

- 2 -
E. =k I+ E u;!' 1—_._;;’.0‘
Rirection of malion changes
=3.0reve'x18.0s +% (-0.187 rev 57°) % (18.0 5)° continuowsly in circular motion,

=27 nav

3.2 CENTRIPETAL FORCE

Mewton's second law of mation states that when a force acts
on & body, it produces acceleration in the same direction. A
farce acting on a moving body along the direction of its
velocity will change magnitude of the velocity (speed)
keeping the direction unchanged, On the other hand, a

constant force acting perpendicular to the velocity of a body
meving ina circudar  path will change the direction but Fia- 280n)

magnilude of velocily (speed) will remaln the same. Such g
force makes the body move in a cirde by producing a radial .
{or cantripetal) accelerstion and is called centripetal force f
(Canlre seaking) force. Figure 3.6(a) shows a ball ied al the ¢
end of a siring is whirked in a horzontal surface. i would not

cantinue in a circular path if the siring is snapped, Careful -"-

observation shows at once that if the string snaps, when the
ball is at the point A, in Fig. 3.6 (b). the ball will follow the Flig. L{bI
straight line path AB which is tangent AB at pointA.

Thus, a force is needed fo change the direction of velocity or mofion of a body
cantinuously at each point in circular motion maving with uniform speed. The force thal
does not alier speed but only direction at each point is a perpendicular force which acis
along the radius of the circular path. This force slways pulls the object towards the centre
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of the circular path. Its direclion is perpendicular to the tangential velocity at each point.

The force needed to band the straight path of the particle
into a circular path is called the centripetal force.

Fora body of mass m moving with velocity vin a circular path of radius r, ceniripetal force
F_iz given by

2
E = T8 =£ ......... {3'1E:|

whera a = vir isthe centripetal acceleration and its direction is towards the centre af the
circle. As v=rw, 0 the above equation becomes:

FEEar . e (3.13)

Example 3.2: i a CD spins at 210 rpm, what is the radial Do You Know?
acceleration of a point on the outer im of tha CD? The CD
i5 12 cmin diamedtar,

Solution: We convert 210 rpm into a frequency in

revolutions per secand (Hz).

Thus f=210- 8% , 1 MmN a5 . 38Hz
min B0 5 B

Far each revolution, the CD rotates through an angle of 2n

radians. The angular velocity |5

w=2f=2 O L ag M 24 ade”
min 5

The radial acceleration is:

a=wr={7.0arads ¥ «0.06m = 29ms”
Example 3.3: Aball tied to the end of a <tring, is swung in a
vertical circle of radius runder the action of gravity as shown &0 fight st high speed

in Fig, 3.7, Whal will be the tension in the siring when the ball  reguires a large centripetal

is at the point A of the path and its speed is v at this point? force thal makes the stunt
dangerous even (I the alr

Solution: For tha ball lo travel in & circks, the force acling planes are not soclose,
o the ballmust provide the required centnipetal force. In this
case, al point A, two farces act on the ball, tha pull of the
slring and the weaight wof the ball, Thesea forces acl along the
radius at A, and so their vector sum must fumish the required
centripetal force. We, therefore, have

I"I'1|.-"E

TS

&% w=myg, thesalore,

v T | i
T | ¥
T= = mg _—rn|._T—gJ

Fig. 3.7

If lang. then T will be zero and the centripetalforce is just equal to the weightl.
w
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Example of centripetal force

In avary circular or orbital motion, cantripetal force is needed which is provided by some

ACENCY.

1. When aball s whided ina horzontal circle with the help of a string. then tension in the
siring provides necessary centripetal force.

2. Foran object placed on a turntable, the friction is the centripetal force,

3. The gravitational force is the cause of the Earth orbiting around the Sun, Moon and
ariificial satellites revolving around the Earih, Tidhits

4. A nomal or perpendicular magnetic force compals a
charge parlicke moving slong a siraight path into 3
clreular path.

oW

5. When a vehicke takes tum on & road, it also needs
centripetal force which is provided by the friction

betwaen tha tyres and the road. If the road is lippery, f;“:‘“;a'fﬁ e "'::‘“‘_' "‘;

then at high speed, the friction may not be suficient .4 ficion alone cannot provide
enough o pravided necessary centripatal force. enargy for centripetal force,

Hence, vehicle will not be able to take turn and miay skid or may even be toppled. To
overcome this difficulty, the highway road is banked on turns, That is, the outer edge
of the track iz kept slightly higher than that of the inner edge.

Applications of Centripetal Force

W know that an abject maves in a circle bacause of centripetal
force. If the magnitude of applied force falls short of required
cenfripetal force then the object will move away from the centre
of tha circle. The centrifuge (Fig. 3.8-a) functions on this basic |
principle. ]
Centrifuge: It is one of the most useful
labaratory device, It helps o separate oul
denser and lighter particles from & mixture, The
mixture is rotated al high speed for a specific
iime. In a laboratory setup, sample tubes are
used where the denser particles will setthe at
the battom and lighter particles will rise to the
fop of the sample tubes (Fig. 3.8-b},

The dryer of the washing machine ako functions on the
principle of cantrifuge. The dryer consists of a long cylindear with
hundreds of small holes on itz wall. Wet dothes are piled up in
this cylinder, which is than rotated rapidly about its axis. Water
moves oubward lo the walls of the cvlinder and thus, drained out
through the holes. In this way, clothes become dry quickhy.

Fig. 3.8 b}
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Cream separator is another practical device which is used {0 separate
cream form the milk, In this machine, milk is whirked rapidly, Since rmilk
is a mixture of light and heavy partickes, when it is rotated, the lght
particles gather near the axis of rotation whereas the heavy particles
will go outwards and hencea, cream can easily be separatad fram milk.

3.3 ARTIFICIAL SATELLITES

Salelliles are objects thal orbil in nearly circular path
around the Earth. They are put into orbit by rockets and are
held in orbits by the gravitational pull of the Earth. The low
flying Earh satellites have acceleration 9.8 m = towards
the centre of the Earth. If thers is no gravitational pull, they
would fly off in a straight line along tangent to the orbit.
When the satellite is moving in a circle, it has an
acceleration f . In a circular arbit around the Earth, the
cantripetal accelaration is supplied by gravity and we hava

FE
P (3.14) y
-ﬁr 20 km A’ A0 Em A’

where v is the arbilal velocity and R is the radius of the omular oti i oril
Hatedlite s Orlvts

Earth {6400 km). From Eq. 3.14, we have
oi
V= ygHR

Mawton had predicated  aboat

_ [ e ariticisl satelites 300 yaars
= y8.Emg x 64210 m S5 T Soite bt e
=710 ms" =T78kms' taken from  his wel-known

This is the minimum vekcity necessary to put a satellite m;‘?m:ﬁ:m::n

into the orbit, called the critical velocity. The period T18  gpject s theown horizontaly wish

given by a panlicular speed from a place
6400 km which is sufficiently high, i will
T -E—Eﬁ- 2% 314 x T slar revatving around the Earth

= 5060 s = 84 min approx.
If, howwvewver, a satellite in a circular orbit 1= at a distance b

much greater than R above the Earth's surface, we
must take Into account the experimental fact that the

gravitational acceleration decreases inversely as the Earh
square of the distance from the centre of the Earth

{(Fig.3.11)

The higher the satellite, the slower will be the reguired GEEY ]

spead and longer It will take 1o complete ona revoluton
around the Earth. Fig. 3,11
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Orbital Velocity

Figure 3.12 shows a satellite going round the Earh in a
clrcular path. Let the mass of the satellite be m, and vis its
orbital speed. The mass of the Earth is M and rrepresants
the radius of the orbit. A centripetal force mv /T is required
to hokd the satallite in the orlat, This force s prowded by tha
gravitational force of attraction between the Earth and the
satellite. Equating the grawitational force to the required
centripetal force, we have

Gm M mve

= =—

v GM
=7

This shows that the mass of the satellie is unimportant in
describing the satellite's orbit. Thus, any satallite arbiting
at distance rfrom the Earth's centre must have the orbital

speed given by Eg. 3.15. Any speed less than this will
bring tha satellite tumbling back to the Earth,

Example 3.4:

ar {3.15)

M= 6.0 x10* kg and its radius R = 6400 km,
Solution:
A r= R+ h= (6400 + 384000} = 390400 km

Ueing  v= vﬁ4

= 1,025 km &'

BET®10" N mhg™ « 6 x10% kg
320400 km

Also

2zR

T =577 = 23,14 » 390400 kmx 3 Kl

025 kme' | GOXE0XZ4S
= 277 days

WeightlessnessinSatellites

¥When a satellite is launched by a rocket in its desired orbil
around the Earh, then it has been abserved practically that
gverything inside the satellite experiences weightlessness
becausa the satellite is accalerating towards the centra of
the Earth asa freely falling body.

An Earth satallite is in circular orbit at
distance of 384,000 km from the Earth's surface. What is its
period of ona revolution in days? Take mass of the Earth

Fig. 1.12

Tldbits

Tha momant you switch on your
rmablle phona, your locstion can
be tracked immediately by

global posttoning syatem,

In 1964, af a heighl of 100 km
abowe Hawadl island with a
spead ol 20000 ken B Bruce
McCandless stepped into
spece from & space shublle

and becama the first human
salallite af the Earh.

Do You Know?

Your weight slighlly changes
when lhe valocily of the
elavatar changas al ha atar
and end of & ride, not dunng
the rest of the ride whan that
wigdodily i constan,
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Consider a satellite of mass & revolving in its orbit of
radius r around the Earth, Abody of mass m inside tha
satelite suspended by a spring balance from the
celing of the satellite |s under the actlon of two forces,
That is, its weight mg acting dowmward, while the
supporiing force, called nosmal force F, or tension in
the spring acting upward, as shawn in Fig, 3,13, Thair
resullant force is equal 1o the centripetal force required
by the mass m which is acting towards the centre of tha g A

Earh. and s expressed s
F =mg-F ... (3.16) Whan a bucket full of water is
e rapidly whirled in & wvertical
i circular path, water does not
i R F 5l o aven H the bucket is
a inverled al the maximum
my
henm -.—‘:- - mg-E; ........ {3; TE'E} MIght,W'trj'lnrtan?

It may be noted that the centripetal force responsible for the revolution of the satallite
around the Earth is provided by the gravitational force of attraciion between the Earth
and the satellite.

F,= F.
T
Mg = M.
'i":
8= =
Hence, Eq. 3.16(a) bacomes:
mg=mg-F,
ar E =0 Asironaul Moaling ingide the cabin of 4 spaceship,

This shows that the supporting force which is acting on a body inside the satellite is zero,
Therafore, the bodies as wall as the astronauts ina satellite find themsalves in a state of
apparent weightlessness.

Artificial Gravity

In @ gravily free space, there will be ne force that will push anybody to any side of the
spacecrafl, If this spacecraft is fo stay in the orbit over an extanded penod of time, the
weightlessness may affect the performance of the astronauts present in that spacecraft.
To avercome this difficully, an arfificial gravity can be created in the spacecraft, This
could enable the crew of the space ships o function in an almost normal manner. For
this situation to prevail, the spaceship is set into rolation around its own axis. The
astronaut then is pressed lowards the outer rim and exerls a foree an tha "floor’ of the
spaceship in much the samea way as on the Earth.

Consider a spacecraft of the shape as shown in Fig. 3.14. The outer radius of the
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spaceship is R and it rotates around its own central axis
with angular speed m, than it angular acceleration a, Is

a. =R e
2
Butm = TH where [ is the period of revolution of space ship

2
Henca 8, = HEE;‘E - Rd’; Fig. 3.14
gy X
As frequency F = 11, therafore, . "
# -R4n'f

7 _ 2 __1_ ﬂ'_,_-
ar r s ar LEJTJ:

As described above, the force of gravity provides the
required centripetal acceleration, therefore,

d: =g

1
oy form % (317} The suface of the rotating
ﬁmm&hm;ﬂmﬂ
When the spaceship rolales with this frequency, the jhemsty provides the centripsial

artificial gravity like the Earth is provided to the inhabitants ﬂmmmmmm
the spaceship. OISO SO RO PT

3.4 MOMENT OF INERTIA

Consider a mass m attached to the end of a massless rod as -
shown in Fig. 3.15. Assume that the bearing at the pivot
point O is frictionless. Let tha systam be in a horizontal plane.,
A force Fis acting on the mass perpandicular to the rod and

hence, this will accelerata the mass according to:

F=ma
In doing sothe force will cause the mass to rotate about 0. mg 218
Since tangential acceleration a; is related to angular g, pece F causes & ke

acceleration o by the equation. about the axis O and gh'es
ar = ra the mass m an angular
accefarabion o about the pivol

Sa F=mra point,

Ag tuming effect is produced by torque 1, it would, therefore, be belter o write the
equation for ratation in terms of targue. This can be done by multiplying both sides of the
above equation by r, Thus,

rF = T=torque = mr
which is rolational analogue of the Newlon's second law of mobion, F = ma.
Here F is replaced by 1, & by a and mby mr®, The quantity mr is known as the moment
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ofinertia and is represenied by . The moment of inertia plays Do You Know?
the same rale in angular molion as the mass in linear motion, *
It may be noted that moment of inerlia depends not only on
mass mbutalsoonr’,

Maost rigid bodies have different mass concentration at
different distances from the axis of rotation, which means tha
mass distribution is nol undiorm, As shown in Fig, 3,16(a), the Tﬂ‘v_.
rigid body is made up of 7 small pieces of masses my, mz..... Ll

at distances r, . r, ,..... from the axs of rotation Q. Let the  Two cylindere of equal masa,

body be rotating with the angular acceleration o, so the Tha ona with tha largar
. e diameter has the greater

magnitude af the torque acting on mris rolaBona| Wertia,
=
'l'.I = m.lﬁ o
Similarly, the torque an m: is For Your Information
g
T,= Momerie of inera of vedows
2= Maln Oz
and so on. DpEAFE KA S
A
- [
L

A
Thin Rod

- dmehe mi

1 m
. | i
Fig. 3.18 ]
Each small piece ol mass within a large, rigid body undengosae the -

cafaration about the pi L
same anguar acoaiaration 8 pivot poin e
Since the body s rigid, so allthe massas are rotating with the

= mt
same angular acceleration o,
Total forque Tiew is then given by -
Tigs = (Ml + Mars + . 4m,rila Fs

. Solid dise o cyclinder
={ 3.m n plmEm
=1
or o e o {3.18) ]

where | iz the moment of ineria of the body and is
expressad as

L =mn? e (3.09)
=]
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3.5 ANGULAR MOMENTUM

VYWe have already seen that linear momentum plays an imporiant role in ranslational
muotion of bodies. Similarly, another guantity known as angular momentum has
important rola in the study of rotational mation.

A particle is said to possess an angular momentum about a reference axis if it
so moves that its angular position changes relative to that reference axis.

The angular momentum L of & partide of mass m moving
with valacity v and momentum p (Fig. 3.18) relative 1o tha
onigin Q iz defined as:

LSRR, iy [3.20)

where ris the position vector of the paricle st thal instant
relative to the orlgin O. Angular momentum is & veclor
quantity. Itz magnitude is:

L = rp sint = m rv sind
wherz 8 is the angle between rand p. The directionof L iz

perpendicular to the plane formed by rand p and its s2nse
is givan by the right hand rule of vector praduct, 51 unit of
angular momentumis kgm' s’ or J s.

If the particle is moving in a circle of radius rwith unifarm
angular velocity «, then angle between r and tangential
velocity is 90°, Hence,

L =mrvsin 90" =mrv e L
The sphene in (8] & I'I:lla-ﬁ'g n
But V=1 Hence L=mrm the sense ,;h.g,-.]wmgm
Now consider a symmaetric rigid body rotating about a fixed 870" A Sl emlty modt

ar momanturm are taken
axis through the cenire of mass as shownin Fig 3.17, Each m upward along the

particla of the rigid body rotates abaul the same axis ina  rotational axis, as shown by
circle with an angular velocity w. The magnitude of the the right-hand nilein (b}
angular momeantum of the particle of mass m,is m, v rabout
the origin 0. The direction of Liig the same as thal of w.
Since v = nm, the angular momentum of the dh particie is
m. r’w. Summing this over all particles gives the tolal
angular mormentum of the rigid body.

5]
L={Err7I r2) e
it

where /s the moment of inertia of the rigid body about the
axis of rotation.
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Example 3.5; The mass of Earth is 6.00 x 10" kg. The distance r from Earth to the
Sun is 1,50 x 10" m, As seen from the direction of the North Star, the Earth revalves
countar-clockwise around the Sun, Determine the orbital angular momentum of the
Earth about the Sun, assuming that it traverses a circular orbit ‘about the Sun once &
year{3.16x10's).

Solution: To find the Earth's orbital angular momentum, we must first know its orbital
speed from the given data, When the Earth moves around a circle of radius r, it travels a

distance of 2nrin one year, its orbital speed v is thus, v = %
Orbital angular momentum of the Earth =L =mv.r
2rm
St
_2mi1.50 x10"m)* % (6,00 X1 D“hgl
318 X107s

=267 x10% kg m® s
The sign is positive because the revolufion is counter clockwise,

3.6 LAW OF CONSERVATION OF ANGULAR MOMENTUM

The law of conservation of angular momentum states Da You Know?
that if no external torgue acts on a system, the total
angular momentum of the system remains constant. ;ﬁﬂﬂdﬁ;ﬂuﬁm

8 5 the angular momentum of the
L..=L+ L + . ..=constant gpinning whee| resists any

The law of consarvation of angular mamanturm is ona of the  1Bndancy o changa and helps
fundamental principles of Fhysics. It has been venfied fram W the-ine upepe
the cosmeodogical to the sub microscopic level, The effect of

the law of conservation of angular momenium s readily
apparent if a single isolated spinning body aklters its moment
of inertia,

If & body of moment of inertia /, spinning with angular speed
., alters its moment of inedtia to |, , then ils angular speed o,
alzso changes so that its angular momentum remains
constant.

Hance fom, =1, m

The angular momentum i a vector quantity with direction

along the axis of rotation. Hence, the direction of angular

momentum along the axis of rotation also remains fixed.

This is illustrated by the fact given below: o
the siring wreps anound the

The axis of rotation of an object will not change itS fngar.
orientation unless an external torgue causes itto do so.
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This fact is of great importance for the Earth as it moves around the Sun. Mo other
sizeable lorgue is expenenced by the Earth, because the major force acting on it is the
pull of the Sun. The Earth's axis of rotation, therefore, remains fixed in one direction with
reference to the universe around us,

Examples of conservation of angular momentum
A man diving from a diving board

A diver jumping from a springboard has to take a few
somersaults in air before touching the water surface, as
shown in Fig.3.18. After leaving the springboard, he ﬁﬁ
curs his body by rolling arms and legs in, Due to this,
his mament of inertia decraasas, and he spins in midair
with a large angular velocity. Whan he is about 1o touch
the waler surface, he stretches out his arms and legs.
He enters the waler at a genlle speed and gels a
smooth dive. This is an example of the law of

consarvation of angular momentum, Fig. 3.18

The spinning ice skater Prbiart Sings o b i Miaft
I ~larg
An ice skater as shown in Fig.3.18 can increase his o srn.: f— Iurgq
angular velocity by folding arms and bringing the
stretched leg close to the other leg. By doing so, he
dacraases his moment of inertia. As a result, angular
speed increases. When he stretches his hands and a
leq outward, the moment of inertia increases and hence
angular velocity decraasas,
A person heolding some welght in his hands
standing on a turntable. mmm {M?.-.w,ém :|' {ﬂ'gamm,.

A person is standing on a tumtable with heavy mass el

(dumb-bell) in his hands stratchead cut on both sides as
shown in Fig. 320, As he draws his hands inward, his

Fig. 3,19
At i skl sing sngulse mamentum

Far Youlr Wlormatiom

 has been nobiced that when ice on fhe
palar cags of Earh mieks fnd waber Tows
away |0 the Tarm of rivar; the moament of
inertia of water and hance that of Earth
ahoitits Axs of rotalion increasas dus o
iaj (] conearvation of anguiar momentem.

e A dacreass, tharafore. tha duraton of day
of angutar mansenium raquires thal as the man puls fis Incraaees,
arms in, tha anguiar wloCty NCRaRas.
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angular speed at once Increases. Thiz is because the moment of ineria decreases on
drawing the hands inwards, which increases the angular speed.

Fiywheelis a mechanical device which consisis of 8 heavy
wheal with an axle (Fig. 3.21). Il s used 1o store rotational
energy, smoocth out output fluctuations and provides
stability in a wide range of applications such as bicycles ol

and other vehicles, industnal machinery, gywoscopes,
ships and spacecrafts.

The fywheel called e balanca

wheel requistes the lima keeping
machenism in machanical diocks
amd waiches by maintaming
m‘rtrddnﬂ:iﬂhmlﬁ. w:h’l doas  the mlaﬂnn
toiating system show down as
A Bywhesl wibar drips inta the beakar?

Whan a fly wheal spins, itz angular momentum
resists changes to its orentations, maintaining
stability. This is useful in systems that nead precise
contrel over their crientation without external
interferance.,

The Gyroscopa

Agyroscope is a device which is used to maintain its
orlentation relative to the Earth's axis or resisis
changes in ils orientation. It consists of a mounted
flywheel pivoted in supporting rings as shown in
Fig. 3.22. 1 works on the basis of law of
conservation of angular momentum due o is large
moment of inertia. When the gyroscope spins at a
large angular speed, il gainz large angular
mamentum, It is then difficult to change the
orentation of the gyroscope’s rolational axis due to
its large moment of inedia. A change in orentation
requires a change in its angular momentum, To
change the direction of a large angular momentum,
2 comesponding large lorgue is required, Even if
gyroscope |s tited (Fig. 3.23), it stll keaps levitated
without falling. Hence, it is a reason why a
gyroscope can be usaed to maintain orientation, The

Fig. 3.23
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main applications of gyroscope are In the guiding system of asroplanes. submarines
and space vehicles in order to maintain a specific direction in space 1o keep steady

COUrse.

Plenats move sround this Sun in efiplicsl orbils with Sun siluated 8l ene of B
foot, thus, distance nfulﬂamtimrﬂ'uﬂm e not muatan:wtmh.‘h mrtﬁa

Sin, 15 orbital velosily increases aciomaticaly, Wiy ?

|@ Multiple Choice Questions

Tick {+ ) the correct answer.
3.1 The ratio of angular speed of minute's hand and hour's hand of walch =

{a) 1:6 {b) 6:1
(c) 1:12 {d) 12:1
3.2 A body travelling ina cirche at consiant speed
{a)  hasconstant velocity {b) hasaninward radial acceleration
{ch is not accelerated {d} hasanoubward radial acceleration

X3 Astone al the end of leng string Is whided in vertical circle at a constant speed
The tansion in the siring will be minimum when the stone is;

{a) attha top of the cincle (b} half way down

{c) atthe bottom of cirdle {d}  anywhereinthe cirdle
34 Evary paint of rotating ngid body has

(a) same angular velocity () same linear velocity

(&) same linear accelaration {d) same linear distance
;& The minimum velocily necessary o put a satellibe into the orbil is called:

(a)  terminal velocity (b}  chtical velacity

(c) artificial velocity (d) angular velocity

3.6 Anastronaut is orbiting around the Earth in a large capsule, Than,
{a) he will be in a state of weightlessness with respectto capsule
(b}  haisfrasly falling towards tha Earth
(c) a ball projected atan angle has a straight lime path as observed by him
{d) all the above

3.7 An object in uniform circukar motion makes 10 revolulions In 2 seconds, Which of
the follawing statement (s frua®?

{a) Itz periodis 2.0s (b} Msperiodis20s
(e) = fraquaency is 5 Hz (d) Msfrequencyis02 Hz




o A man inside the artificial salellite fesls weightlessness because the force of
attraction dua o ihe Earihis

{a) zero at pole

b balanced by the force of attraction due to the moon

{c) equal tothe centripetal force

(d) non-effactive due to some particular design of the satellile

3.8 A bottle of soda water is grasped from the neck and swung vizkly in & vertical
circle, Nearwhich portion of the bottle do thie bubbles collect?

(&) Mear the botiom (=1} In the middle of bottle
(c) Bubbles remain distributed throughout the volume of the bottle.
(d) Mear the neck of the bottle
310 The moment of inartla of body depends upon
Y mass of the body and its distribution about axis of rotation
(b) widume of the body
(c) kingtic energy of the body
(d) angular momeantum of the body

F. Short Answer Questions i|

31 State second law of motion in case of rotation.

3.2 What is the effect of changing the position of a diver while diving in the pool?

4.3  How do we get butter from the milk?

3.4 Mass is a measure of inertia in inear motion. What is its analogue in rofafional
mation? Describe briefhy.

4.5 Why s it harder for a car to take tum at higher speed than at lower spaad?

3.6 What are the benefits of using rare wheels of heawvy vehicles consisted of
double tires?

< When a moving car lumns around a comer 1o the left, in what direction do the
occupants tend to fall? Explain briefly.

38 Why is the acceleration of a body moving uniformly in a circle, directed
lowards the centra?

38 How does an astronaut feel weightlessness while orbiting from the Earih in a
space-ship?
| Constructed Response Questions |
3.1 If angular velocity of different particles of a rigid body is constant, will the linaar
valocily of these partickes also constant?

3.2 Adoaf of bread is lying on rotating plate. A crow takes away the loaf of bread and
the plates rotation increase. Why?
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Why doywe tumble when we take the sharp turn with large speed?

YWhat will be time period of a simple pendulum inan artificial satellita?

Is the motion of 3 satellite in its orbit, uniform or accelerated?

What ane the advantages thatradian has been prefemred as 5 unit over degree?

In wniform circular motion, what are the average velocity and average
accelerabion for cne revalution? Explain,

In a rainstorm with a strong wind, what delermines the besl position to hold an
umbrafla?

A ball is just supported by a string without breaking. If it is whirled in a vertical
gircle, it breaks. Explainwhy,
How the centripetal force supplied in the following cases:
(a) A satellite arbiting around the Earth.
i) Acartaking a lurnon aleval road,
(c) Astonewhirled in a circle by means of a siring.
@ Comprehensive Questions [
What is meant by angular momentum? Explain the law of conservation of
angular momentum with daily life examples,
Show that orbital angular momentum; L = lm

Define momeant of inardia, Prove that lorque acting on rotating rigid body is
equal to the product of its moment of inertia and angular momentum.

What are artificial satellites? Calculate the minimum time period necessary to
puta satallite inte the orbit,

Define orbital velocity. Denve an expression for the same.

Wirte a note on arificial grawity. Darive an exprassion for frequency with which
the spaceship rotates to provide artificial gravity.

Prove that; iy v=rm .and iy a=ra

Numerical Problems B

A lasar beam is directed from the Earth to the moon, The beam spreads over a
diameter of 2.50 cm at the moon surface, What is divergence angle of the
beam? The distance of moon fram the Earthis 3.8 x 10°'m.  (Ans 8.82107 rad)
A car is moving with a speed of 108 km h'. Ifits wheel has a diameter of 60 cm,
find its angularspeed inrad 8" and revs’, {Ans: 100rads™), 18 ravs’)
An elactric motor is running at 1800 rev min™. On switching OFF it comes to rest

in 20 5. If angular retardation is uniform, find the number of revolutions it makes
bafore stopping, fans: 300 ray)
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3.0

a6

37

3.8

3.9

3.10

A string 0.5 m lang holding a stone can withstand maximum tension of 356 M.
Find the maximum speed al which a slone of 0.5 kg can ba whirled with itin a
vertical circle. {Ans:5.5ms")
The fiywheel of an engine i= rotating at 2100 rev min” when the power source is
shut off, What torgue is required to stop itin 3 minutes? The mement of inerlia of

tha flywheel is 36 kgm’, (Ans. 44 N m)
VWhat iz the moment ofinertia of a 200 kg sphere whose diameteris 60 cm.
pAnes 28,8 kg )

A satellite iz orbiting the Earth at an alitude of 200 km. Assuming the Earih's
radius is 6400 km, calculate the orbital speed of the satallite.  (Ans 7. 7B km b}
A space station has a radivs of 20 m and rotates at an angular velodity of
0.5 rad 5. What is the ariificial gravity expernenced by the astronauts on the

space skation. {Ans:5ms")
A bicycle wheel has an angular momentum of 10 kg m” 3” and angular velocity u-f
2rad g™, Find the value of its moment of inartial, (Ans: Skgm')

A diver comes off 2 board with amms straight up and kegs siraight down, giving
him a moment of inartia of 1Bkg m” about his rotation axis. Then tucks into a
small ball, decreasing his moment of inertia fo 3.6 kg m". While tucked, he
makes two complete rotations in 1.0 second. If he had not tucked at all, how
many revalutions would he have made in 1.5 s from board to water?

{(Ans: 0.6 rev)



After studying this chapter, the students will ba able to!
4 Deriva the farmula for kinetic energy fusing the equabions of motion]

4 Derive an expression for abscluta potential energy of a body at 5 cartain positon inthe
gravitational field including escape valocity]

& Deduce the work done from force=displacement graph.
4% Differantiata between consarvative and non-conservativa forces,
@& Slate and use the work - energy thearern in a resistive medium to salve problems.

':E' ' ork is often thought in terms of physical or mental effort In Physics, however, the
iermwork involves twao things (i) force, and (i} displacement. We shall begin with a
simple situation inwhich work is done by a constant force.

4.1 WORK DONE BY A CONSTANT FORCE

Lel us consider an objact which is being pulled by a constani force F. The force displaces
the ohject through a displacement d in the direction of force. In such a case, work Wis
defined as the product of the magnitude of the force F and magnitude of the displacement
d. This can be written as:

W=~Fd (4.1)

Equation (4.1) shows that if displacement is zero, no work
is done even if a large force s applied. For example,
pushing on a wall may tira your musecles, but work dona
is zero as shownin Fig. 4.1.

The force appled on a body may not always be in the
direction of force as shown in Fig. (4.2, W the force F
makes an angle @ with the displacement d, the work done
Iz equal to the product of the component of force
along the direction of the displacement and the magnitude
of displacemeant. Then
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W= (Frost)d = FAcoSO v w2 |
= W=F.d .o (4.3) 1
F

Equation (4.3) shows that work is a scalar quantity.
The unit of work is joula (). From Eq. (4.1), wa hava

1J=1Nm —— : >

o —=
When a constant force acis through a distance d, the Fig. 4.3

event can be plotted on a simple graph (Fig. 4.4). The
distance is normally plotted along x-axis and the foroe
along y-axis, As the force does not vary, in this casa, the
graph will ba a horizontal straight line. If the constant
force F (newlon) and the displacement d (metre) are in
the same direction, then the work done is Fd (joule).
Clearly shaded area in Fig. 4.4 Is also Fd. Hence, the
araa under a force-displacameant curve can be taken as

b
o

— Fomce
#‘.—11—}

to represent the work done by the constant force. Incase i R
the force F is not in the direction of displacement, the d
graph is plotted between Fcosi and d. Fig. 44

From the definition of work, we find that:
(i) Work is a scalar quantity.

(i) If 6 = 80, work is done and it is said to be positive work.
(i) b= 80" nowork isdone.

i) D> 00" the work done is said to be negative,

(v) Sl unitof work is N mknown as joule (J).

4.2 WORKDONEBYAVARIABLE FORCE

In many cases the force does not remain constant during the process of doing work. For
example, as a rocket moves away from the Earth, work 15 done against the force of
gravity, which varies as the inverse square of the distance from the Earth's centre.
Similarty, the force exerad by a spring increaseas with the amount of stratch, How can wa
cakculate the work done in such situations?

Figure 4.5 shows the path of a pardiche in the x v plane as it moves from point P to point Q.
The path has been divided into n short intervals of displacements Ad,, Ad., ......., Ad,
andF, F......., F, are the forcas acting during thesa intarvals,
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During each small interval, the force is supposed i
to be approximately constant. So, the work done F o
for the first interval can then be writen as '91 e ad,
AW =F, . Aad = F, cost, Ad, il
Pof
and in the second interval
Fig- 4.5
AW, =F,.Ad, = F, cosb.Ad, A particle acted upon by a
iable force, ko
and 50 on, The total work done in moving the e pah st S PP 1o
object can be calculated by adding all these terms. poiniQ,
W =AW +aW.+... .. +AW
¥
=F cost, Ad +F, cosi, Ad*. ... + F cost Ad, k|
n 4 Fooed,
of W= IFcosfdd, o 44 T s s
it - | i P coad),
a4 e S Fceail,
We can examine this graphically by plotting F cos f ] [ - .
varses d as shown in Fig. 4.6. The digplacement o LB | i | .
has been sub-divided into the same n equal P Ag; A MO
intervals, The value of F cos ¢ al the beginning of g
each interval Iz indicated in the figure. &)

Newy the |™ shaded rectangle has an area F cos 8 Ad which is the work done during the
i"™ interval. Thus, the work done given by Eg. 4.4 equals the sum of the areas of all the
rectangles. fwe sub-divide the distance into a large number of intervals so that each Ad
becomes very small, the work done given by Eq, 4.4 bacomes more accurate, If we lel
each Ad toapproach zero, then we obtain an exact resuli for the work done, such as:

Wi = Limit % Fcos8Ad ..o, (4.5)

Ad->0 =

If this mit Ad approaches zerm, the lofal area of the

rectangles (Fig. 4.6) approaches the area between 1 N
the Feosi verses d curve and x-axis rom Pto Qas = ¢

shown shaded in Fig. 4.7. Bl |

Thus, the work done by a variable fores in moving a
partidle betwesen two points is equal o the area © 7 :

under the F cosil verses d curve between the two Displacement d —s

points P and Q as shown in Fig. 4.7. Fig. 4.7

Example 4.1: Aforce Facting on an object varies with distance o as shown in Fig. 4.5,
Calculate the work done by the force as the object moves fromd=01o d=6m.

Solution: The work done by tha force is agual to the total area under the curve from
d =0 tod =6 m. Thiz area is equal io the area of the rectangular seclion from d =0 {0

]
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d =4 m, plus the area of riangular section fromd =4 mlo
d= Gm.

Hence

Work done representad by the area of rectangle =4 mx 5N
=20Nm=20J

Whrkdm‘rerepresentedhytl‘ea‘eaaﬂﬁm@e:%x:mxﬁﬂ

=2S5NmMm=5d
Tharefora, the tolal work done =20J+5/=254

4.3 CONSERVATIVEAND NON-CONSERVATIVE FORCES

Conservative Forces

The space around the Earth in which its gravitational foree acts on a body is called the
gravitational field. When an objectis moved in the gravitational field, the work is done by
the gravitational force. If displacement is in the direction of gravitational force, the work is
positive. If the displacement is against the gravitational force, the work is said o be
negative,

There is an interasting property of the gravitational

force that when an object is moved from one place o i
another, the wark done by the gravitational force does
not depend on the choice of the path. Let us exploreil. e}

Consider an object of mass m being displaced with E
constant speed from point Ato B along various paths

mE LS s

in the presence of a gravitational force (Fig. 4.9). In s -
this casa, the gravitational foroe is equal to the weight Fig. 4.9
mg of the object

The work done by the gravitational force along the path 1 (ADB) can be split into two
pars path 1 (ADB). The work done along AD is zero, because the weight mg Is
perpendicular to this path, the work done along DB is {(=mgh) because the direction of mg
is opposite 1o that of the displacement i.e., i = 1807, Hence, the work done in displacing &
body fram Ate B through path 1 s

W,y =0 + (- mgh) = - mgh
If we consider the path 2 (ACB), the work done along AC Iz also (-mgh). Since the work
done path 2 (ACB) along CB is zero, therefora,

W o=-mgh+0=-mgh
Mow consider path 3, 1.2, a curved one, Imagine the curved path to be broken downintc a
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sanes of horizontal and verltical stepz as shown in ¥

Fig. 4.10. There iz no work done along the horizontal L g B
staps, because mg is parpendicular o the displacement o /{{’T
for these steps. Work is done by the force of gravity only ,.-*"-E\J

along the vertical displacements. During the segment AB, A 5 s
mg is nol negativa; it is positive. But hare all Ay elemants A A l'
are negative, so the products of mg and Ay for all the a’}'—'{--------------------
elements will again be nagative, Therefore, we can write: Fig, 4,10

Waz-mgldy, + A1+ 4 L + Ay ) A smaalh path may be repiaced

by a sedes of infnitesimal i and

S i"-l‘"'*'*-ﬂ-":""t*'ﬁl"ﬂ*'"'-----""i‘-'ll"--:h y dEsplacamants. Wk |5 dons
Hence W, = - mgh oty during the v displacemants.

The net amount of work dane along AB path is still {-mgh). We conclude from the above
discussion that:

Work done by gravitational force is independent of the path followed.

Can you prove that the work done, along a closed path, such as ACBA or ADBA
(Fig. 4.9}, by tha gravitational force s zero?

if the work done by a force In moving an object between two points
is independent of the path followed or the work done in a closed
path be zero, the force is called a conservative force.

A3 shown above, the gravitational force is 8 conservative force, other examples of
consarvative force are electrostatic force and elastic spring forca,

Non-Conservative Forces
Alltypes of forces are nol consarvative farces.

A force is non-conservative if the work done by it in moving an object
between two points or in a closed path depends on the path of motion.

The kinetic frictonal force I8 a non=conserative force. When an object slides over a
surface, the kinetic frictional force acts opposite to the motion and does negative work
equal in magnitude to the frickonal force multiplied by the length of the path. Thus,
greater amount of work is done over a longer path betwaen any two points. Hence, the
work depends on the choice of path. Moreover, the total work done by a non-
consenvative force in a dosed path is not zero.

Other example of non-conservative force are air resistancea, tension in a string, normal
force and propulsion force of a rockel,

4.4 POWER

In the definition of work, it is not clear, whether the same amount of work is done in one
sacond or in one hour, The rale, al which work s done., 15 often of mlerest in practical
applications,
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Power is the measure of the rate at which work is being done.

I weork A Wis done in a time interval Af, then the avarage power Paduring the intarval Af
i% dafined as:

Ph' - ﬁ_w .......... {"LE}

At

If work is expressed as a function of time, the instantaneous power P at any instanl is
defined as:

S
p= ﬂ YRR (4.7}

whera AW s the work done in short interval of time Al

Since AW = F Ad
Hence po Fd _ g Ad
¥ A
il
=i e
nee Al v
I-hma F= F.“ ---------- tq'ﬂi

The Sl unit of power is watt, defined as one joule of work done in one second.

Sometimes, for E:r:a_mpla, In.tha electrical For Your Information
measuremeants, the unit of work s expressed as

wall second. However, a commercial unil of 1, st

o Power
electrical energyis kilowatt-hour, i Jm
Jumto Jet Aroraft. 13010

One kilswatl- haur is the work done in ane hour by Caar at 0 km #r' 1 1x10"

an agency whose power is one kilowatt. Elactric: hadter 2wl
Cobourad TV 120

Therefore TEWh=1000Wx 3600 s Flas ght {iwe cals) 1.5

or TEWh=36x10"J=36M. Pocket calculator 7.8l

Example 4.2: A70 kg man runs up a long flight of stairs in 4.0 5. The vertical haight of
the stairs iz 4.5 m. Calculate his power cutput inwaitts.

R S

Power = m!%h It takas mboul 510" J of enengy to
make mcar and the car then wses
o= TOkgx2.8ms " x4.5m about 16107 J of energy from petrol
= o in it life $re.
P=TTx10kgme =77 X100 W
4.5 ENERGY

Energy of a body s its capacity to do work. There are two basic farms af enargy:




(1] Hinatc ernengy i Polentad enengy

Kinatic energy is the energy possessad by a body due to its motion and patential
energy is the energy possessad by a body due to its changed position.

The kinetic energy and the potential energy both are the kinds of mechanical enargy.
Kinetic Energy

Let us darive a formula for the kinetic energy of a maving bady, Consider a car running
with a conslant speed on a road. If its engine is switched OFF, it will stil cover somea
distance before stopping. As long as it is moving, it is doing work against the force of
friction of the road. In other words, during this interval, it will exart a force aqual in
magnitude 1o the force of friction £. Let the distance travelled before coming to rest be d,
then the work dane by tha car would be fd. This work is dona by the car due 1o its maotion.
The ability of a body to do work due to its motion |5 its kinetic energy. Therefore, kinetic
energy of the caris equal to fid. The acceleration cam be found by using Mewton's second
law of mation, i.e.,
F= ma

As the car slows down and finally stops, its acceleralion a is negative because il s
produced by force of friction £ acting apposite to the direction of motion. Thus,

- _m
or a=-i
m
We can now determine the value of {d | by using the third equation of motion, Le;
EBSI = 'l"r:l —"i'l:ll
Final velocity v,=0 Approzimate Enengy Values
Distance S=d st s L
f Burning 1 tan coal S
Acceleration o= Buening 1litre petrel Sx0
Putting values in the above equation of motion, wea have K& ofa "';}“;m e Wi
hli]d= 0 =2 Runring Persor 8t 3x00°
m 10 km b’
td 1....a Fssicnof one alom 18107
T HY af uranium »
As T dis equal to the kinetic energy of body, therefore, i ekt S
Kinetic sniargy = izmvz (4.9)

Since, kinetic energy 15 equal to work which the body is capable of doing, so the unit of
kinetic energy must be that of work, i.e. joule (J].

Example 4.3: A car weighing 18620 N is running with a speed of 16 m 5. Brakes ara
applied and i i brought to restin a distance of 80 m. Determine the average force of
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friction acting on i,
Solution:
Giventhat v=16ms’ d=80m, w= 18620 Nand f=7
The kinetic energy of the car is equal 1o the work done by It before stopping, i.e.,
1

iﬂ?ru.-"‘ = fd

9 gBms’

Futiing the value in the above eguation, we have

éﬂ&l]llkgx (16 ms1)'= =80

=1800 kg

or f=3040 N

Potential Energy

The potential energy is possessed by a body because of its position in a force fisld, 2.g.
gravitational fleld or bacause of its constralned state.

The energy stored in a compressed spring is the potential ensrgy possessed by the
spring due bo its compressad or stretchad state, This form of erergy is called the elastic
potential energy.

Absoclute Potential Energy b
The absolute gravitational potential energy of an object :
at a certain position is the work done by the gravitational a4
force in displacing the object from that position to
infinity where the force of gravity becomes zero.

The relation for the calculation of the work done by the i
gravitational force or potential energy 1s mgh, which is true
anly near tha surfaca of the Earth whore the gravitational
force is nearly constant. But if the body is displaced through
a large distance in space, let it be from paint 1 1a N (Fig. 4.11)
in the gravitational field, then the gravitational forca will not
remain constant, since it vares inversely to the square of the
distance.

In order to overcome this difficulty, we divide the distance
between points 1 and N into small steps each of length Arso
that the value of the force remains constant for each small
step, Hence, the total work done can be calculated by adding
the work done during all these steps. If r, and r, are tha

distances of points 1 and 2 respectively, from the centre O of the Earth {Fig. 4.11.), the

e
e~

.1________:1.-..-.--+
B it B

Fig. &.11




Fhyxics el

work done during the first step 1.2, displacing a body from paint 1 to point 2 can be
calculated as below, Tha distance belwean the canire of this step and centra of tha
Earth will be:

r=r-.+-"'i Do You Know?
2
As —L=AF then Fp=F *Ar

Hans  pa lifrof s fh e [6A0)
s 2

The gravitational force F at the centre of this step is;

Mm
F:ET .......... [#.11)

whera m = mass of an object | M= mass of the Earth
and & = Gravitational constant

Squaring Eg. 4.10

: -.d' £ 3

T Thare is mora enargy resching
. Earth in 10 days of sunight

3 2 Ar o | Ar than im all the fossil fuels on fhe

r=r1+2r,?+?| Earth,

As (Ar) =< ", s0 {Ar ) can be neglected as compared to ',
Hence Fi= 4 AF
Fulling the value of Afr=% —F
F=R+nfE-Rl=nn
Hence, Eq. 4.11 becomes
A

F= G—

__________ (4.12)
hf

As this force s assumad (o be constant during the intarval Ar, so the work done is;

W,-s: = E.Ar = FArcos 180° = - GMm f‘_:
12
The nagative sign Indicates that the work has to be dona on the body from point 1to 2
because displacemsant is opposite to gravitational force, Putting the value of Ar, we have

Wiz ==GMm =L
3

i

F
ar Wi =—G#¢m[}—l-]
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Similarly, the work done during the second step in which the body is displaced from point
2in3ls:

Wo sy =- GMm Ll—i
5
and the work done in the last step is: HEL’JI'L:&'.‘,’. ;:d g
[ § el i B,
Wi o =- GMm | _ 1 hisleny o

il I
I -1 I'|'d_

Hanca, the lotal work done in displacing a body from podnt 1 to N is calculatad by
adding up the work done during all these steps.

W = Wraz + Woae+ o + W ion

- G [1-1 AT |
fy Fai Kfa fay 2T B R

On simplification, we have -

Wi = - Glm [l-i]

o T

If the point M s siluatad at an infinite distanca from the Earth, than
A |
Iy = a0 i &0 —=— =

I"ll,r L= P
Hance Wm = _EFE
1
This total work by definition is the absolute potential energy (F.E} as statad earlier
representad by L

= GMm

r
This is also Known as the absobute value of gravitational potential energy of a body at
a distance r from the centre of the Earth,

hote thal when rincreases, U baecomes less nagative Le., Uincreases, it means when
we raise a8 body above the surface of the Earth, ifts P.E. increases, Therafore, if we want
io raise the body up to infinite distance, we will have to do work on it equal to Ly
that its P.E. becomes rerg.

Mow tha absolute potential energy on the surface of the Earth i2 found by putting

r= R{Radius of the Earth), 50

S0

GMrn
R

The negative sign shows that the Earth’s gravitational field for mass m is attractive. The
above expression givas the work or the enargy required 1o take the body out of the

Absolute potential energy = U, = - (4.13)
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Earth's gravitational iield, where ifs potential energy with respect o Earthis zem.
4.6 ESCAPEVELOCITY

It is our daily life experience that an object projectad
upward comes back to the ground after rising to a certain

For Your Information
Somo Excape spoods (km £'
Heavenly body  Escape speod

height. This is due to the force of gravity acting downward, . 24

With increased initial velocity, the object rises lo the  Merwy 42

greater height before coming back. if we go on increasing  Maes L

the initial velocity of the object, a stage comes when it will '::':1' :1“;

not return to the ground. it will escape out of the influenca L - r 4

of gravily. Haping L
The initial velocity of an object with which m 3;1"
it goes out of the Earth's gravitational

field, is known as escape velocity.

The ascape velocity comesponds to the initial kinetic energy gained by the body, which
camies it o an infinite distance from the surface of the Earth.

Initial K.E. = %mvf,,_.

We know that the work done in lifting a body from Earth's surface to an infinite distance is
agual lo the increass in potential anergy.

Incerase in PE. =M~Gﬂ'—;"}| = %
where Mand R are the mass and radius of the Earth respectively. The body will escape

out of the gravitaticnal fiekd if the initial X_E. of the body is equal toincrease in PE. Then

1 2. Mm
Emlll"m = G__R_
or Voo = J:?E"E e (A14)
R
GM G
As g= o7 or gR= '
Hence Vige = .,Il'.&g.l‘? .......... 4.15)

The value of v"r comes out 1o be approximately 11 km g
4.7 WORK-ENERGY THEOREM

Whenever work is done on a body, it iIncreases itz energy. For examgple, If a force F acts
on 8 body of mass m, initiglly moving with velocity v , through a distance g and
incraases s velocity to v, | than the accaleration produced will be:

2ad =y’ =¥
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lr i -
or = Em e A {4.16)
From the second law of maotion:
F=ma
or FEL= mon (4.17)

¢ T
Comparing Eqs. 4.16 and 4.17, we have

All th Bood yodl @af n ong day nas

L e gbaut e 5emMe enargy 85 113 Ikne
m - 2g (1Y) otpauel. -
1 | i ]
=l 2 e 4.1
or 5 Eﬂ'ﬂl; { E]

This expression is the work-energy theorem, i states that:

The change in kinetic energy of an object is equal to the work
done onitby a netforce.
W = Change in kinetic energy = (K.E), - (K.E), = %mvf— ;_m-.-.2

This is also known as work-anargy principhe.

The work-energy theoram is applicable for any direction of the force relative to the
displacemenl. For instance, an object with kinetic enargy can perform waork If it is
allowed to push or pull on another object. In this case, the work will be taken as negative
and the kinetic enargy of the object will decrease, The theorem remains valid even if the
force may vary from polnt to point.

Example 4.4: A motorcycle rider weighing 60 kg is coasting
daown a 247 slapa. Tha weight of motorcyele is 30 kg, Atthe lop of
the slope, the speed of motorcycle is 3.2 m 3. If the kinetic
frictional forca is 100 N, what will be the speed of the motoroycle
72 m downhill?

Solution: The normal force F, is balanced by the component of weight (mgoos24™)
parpendicular to the slope, Let the kinetic frictional force is £, than the net force Fis:

Py

- -
[

F= mgsinZ4"=F where m=iotal mass=60kg + 30 kg = 2 kg
of F=(90kg=98ms" «0.4)-100N !
F = 2628N ) -
.-"_‘.
Wokdone W =Fd =2528N=72m = 18201.6 J o "{_
As waork is positive, so applying work — enargy theoram, Aff %%: ""-..I
L 2 L .
W= (KE), - [KE) L \ g
Form here, T g I

(KE) =W + (KE),
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Putting the values, we have

Jmi = W
%xnn kgxy = 18201J +1§:-=Eﬂkgrr{3.2m5"]’
This gives, v = 4147m's’
ar ¥, = J4147m2s2 = 2040z
4.8 INTERCONVERSION OF POTENTIAL ENERGY AND
KINETIC ENERGY

Consider a body of mass m at rest, at a height k above the PE = mgh :I
m ia

surface of the Earth as shown in Fig, 4.12. At position A, the KE=D
body has PE. = mgh and K.E. = 0. We releasea the body and '

as it falls, we can examine how kinetic and potential energies L

associated with it interchange. |

Let us calculate FE. and K.E. ai the position B when the
body has fallen a distance x, ignoring air friction, PE=mgine g

h

KE=mge !
e I'TJ'Q' 'Ih - x';l |y
1 PE=D _
and KE = — m“r!? KE= n'.gl'r—--'-l':--...-J-.—.
Velacity v, at position B, can be calculated from the relation, PR
W=y +208
% W= Vg 1 w=0 ’ S=x
Vo =0+ 2gx
'n-i; = 2ix
1
Therafore K.E = Em (2gx)
= Imgx

Total energy at position B = PE. + K.E

Tatal enargy =mgh-x}+mgx=mgh ... (418}
Al position C, just before the body strikes tha Earth, PE. =0 and KE =
where v. can be found out by the following expression.

1
2

g
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v, =w +2gh=2gh as w=0

1 1
ie., HE = Emh’: = E m x 2gh = mgh

Thus, at point C, kinetic energy is equal to the original value of the - b
potential enargy of the body. Actually, whean a body falls, its III

velocity increases Le., the body i3 being accelerated under the ¥ T-
action of gravity. The increasa in velocity results in the increase in ! x
its kinatic anargy. On the ather hand, as the body falls, its haight '
decreases and hence, its potential energy also decreases. Thus, l

we see (Fig, 4,13 that:
Lozsin PE. = GaininK.E

mmr—hzh%mﬁf o o (4,200

Fig. .13

whera v, and v, are he velocities of the body at the heights h, and h, respactively. This
resultis true only when frictional force s not considered.

If we assume that & frictional force f is present during the downward motion, then a part
of PE. is usad in doing work against friction equal to Fh. The remaining BEE =magh—Th
is converted into K.E.

Hence mgﬁ—fh=% my’

or mgh = %mrﬁ fh . (421)

Thus Loss in PE. = Gain in #.E. + Work done against friction
Conversely,

Loss of KLE, = Gain in PE + Work done against friction

Example 4.5:

A car weighing 1100 kg iz moving with a velocity of 12 m 5", Whan it is at point P, its
engine siops. If the frictional force is 120 N, what will be its velocity at point Q7 How far
beyond Q will i go before coming o rest?

Solution

The kinetic enargy possessed by the car al paint P will % .
partly be converted into P E. and partly used up in doing gl 1.5m

work against friction as it reaches point Q. Therefore, : J

Losz of K.E =Gain in PE. + Work against friction




F'I'|.I.I|:L-'IHE; @

%m{u;’— V) = whfd

%x11mm{1¢4m*s"-vf1 = (1100 kg »9.8ms"«x 1.5 m) + 120N =24 m

550 kg (144 m’ s°— ") = 16170 kg m* & + 2880 kg m’ &°
16170 kg m® 5* + 2880 kg m® 5™
550 kg

v =144mis’ - 34Em s’ = 1094 m' s’
Velocity at point Q, v =+41094m's® =10.5ms’
Mow if the car stops at point R, then using the formula:

(144 m' " - ) =346 m &

1 £l
24 =T
my E

%xﬁﬂn kg x100.4 m¥ &% = 120 kg 7 &% xS

S = 501 m approximately
Example 4.6: Anobjectofmass 3 kg falls from a height of 15m. Ifit strikes the ground
with a velocity of 16 m 57, calculate the average frictional force of the air,
Solution: Lossof PE =Gainin K.E. + Work done against friction

s wh:%mvz+fh
Akg=98ms® x165m= %xﬁ kafems' Y +F=15m

441 kgm's” = 3Bdkgm's” + 15mx{f
441 kg m" 5" = 384 kg m's”
15m

or F= =3.B8kgms’ =38N

@ Mutiple Choice Questions )|

4.1 A1 kg mass has potential enargy of 1 joule relative to the ground when it is at a
height of;
{a2) 0.102m (b} 1m (c) 9.8m {d} 32m

4.2 An iron sphera whose mass is 30 kg has the same diametar as an aluminium
sphere whose mass is 10.5 kg. The spheres are simultanecush dropped from a
cliff, Vhen they are 10 m fraom the ground, they have identical:

(a) accelerations (b)momentums [c) potential energies (d) kinelic energies
4.3 Abody at restmay have;
{a) speed (b velocity () momentum (dy energy
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4.4 The height above the ground of a child on a swing varies from 0.5 m of his lowest
pointto 1.5m at his highast paint, The maximum speed of the child is approximately:
(a) 1.5ms" (b) 44msg"’
(c) 9.8ms’ (d) Dependsupon child's mass

4.5 When a ball Is thrown vertically upward and then falls back to the ground, which
force can be considered conservative in this scenario?

(a) Airrasisiance (b Gravily
() Frictionbetweenballandair  (d) Contact force with hand
4.8 According Lo work-energy principle in linear motion, the work done on body is equal
fo:
(a) changeinK.E. (k) changeinPE.

(c} zero (b) sumofk.E.andP.E.
4.7 Powerof alampis 6 W. How much energy does a lamp give oul in 2 min?
(a) 124 {(b) 204 (c) 3J (d) 720J

4.8 Adry battery can deliver 3000 J of anergy to a 2 W small electric motor before the
battery is exhausled. For how many minules does the batlery run?

(a) 1500min (b) 100min (e} S0min (dy 25min

4.9 The kinetic energy acquired by a mass m after travelling a fixed distance from rest
under the action of a constant force is directly proportional to:

(a) “m (b) 1Hm (e} m (d) independent of m
4.10Abody maves a distance of 10 m along a straight line under the action of 3 M force. If

the work done is 25 J, the angle which the force makes with the direction of motion of
the body is:

(a) o (b} 30 (¢} 60" (d) 80"
@ Short Answer Questions [
4.1 Why is electrical power required ab all when the elevator is descending? Why
should ba thare ba a limil on the number of passangers in this case?
4.2, Abody is being raised to a height H from surface of Earth. What is thie sign of work
done by both? justify,
4.3 Abody falls towards the Earth in air. Will its total mechanical energy be consared
during fall? Justify.

4.4 Calculate power of a crane in Kilowall which lifts a mass of 1000 kg to a haight of
100min 20 second.

4.5 Atrolley of mass 1500 kg carrying sand bags of 500 kg is moving uniformly with a
speed of 40 km R on a frictionless track. After some time, sand starts leaking out of
whaole sand bags on the road al a rate of .05 kg 57, What is the spesd of the trolley
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4.6
4.7
4.8

4.9

after entire sand bags are empty?
When will you say that a force is conservative? Also give an example,
Give absolute and gravilational units of work on M.ELS & C.5.3 syslems.

A bady dropped from a height of H reaches the ground with a speed of 1.2gH.
Calculate work done by alr friction.

Abicycla has a K. E. of 150 J. What K. E. would the bicycle have if it had?
(I Same mass but has speed double?
(il Threetimes massand was moving with one half ofthe speed?

4,10 What will be the affect on K.E, of the body having mass m. moving with velocity v

when its momentum becomes double? Justify,

4.11 Deoes the international space-station have gravilation FE. arfand Kinslic energy?

4.1
43
4.3

4.4

4.5

416
4.7

4.1
4.2

4.3
4.4
4.5
4.6

Explain.
| Constructed Response Questions | |

When will you say that a force is conservative? Give two conditions.,
Abghtand heavy body have same linear momentum, which one has greater K.E. 7

A motorcycle is runining with constant speed on a horizontal track. ks amy work being
done on the motoreycle, ifnonelforce is acting on i1?

Aforce acts on a ball maving with 14 ms” speed and brings s speedto6ms’, Has
the force done positive or negative work? Explain your answer.

A slow moving truck can have more kinetic energy than a fast moving car. How i3
this possible?

Why work done against friction is non-conservative in natura ? Explain briefly.

Does wind contain kinetic energy? Explain.

'§ Comprehensive Questions |

Define K.E. Denve an expression forthe same,

How work is done by a:

i) constantforce i) variable force?

Define conservative fiekd. Show that gravitational field is consarvative in nature,
What iz meant by absolute P.E.? Derive an expression for absolute P.E.

Stale and explain work-anargy theoram in a resistive medium,

Define escape velocity. Show that an expression for escape velocity can be
expressad as v2Rg, where R and g denota radius of the Earth and accaleration dus
to gravity, respectively, Also find its numencal value.
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ﬁ MNu |_11_E_rir_::-|l Problems F

4.1 A machina gun fires & bullets per minute with a velocity of 700 m &7, If each bullat
hasa mass of 40 g, then find power developed by the gun? [Ans: 9800 watt)

4.2 Atamily uses 10 kW of power. Direct solar energy is incdent on honzonlal surface at
an average rate of 300 per square metre, If 75% of this enargy can be converlad
into useful electrical energy, how large area iz needed (o supply 10 EW?

LAnS: dd.44 m')
4,3 W mass of the Earth iz 6.0 x 10" kg and mass of Sun ks 1.98 x 10" kg. The sun is 160
million km away from the Earth, Find the value of gravitational P £, of the Earth,
(Ang: =497 x 107 J)
4.4 Water in a bucket tied with rope is whirled around in a vertical circle radius 0.5 m.
Calculate minimum velocity at the lowesat point so thatwater does niot spill from it
(Ans: 4,94 m 5"}
4.5 ATSwattfanis used for 8 hours daily for 30 days. Find:
{i) energy consumed in electncal units
(i} electricity biloffan Hona unitcostls Re, 22,87 [ Ans (i) 18 units (I} Bs, 405)
4.6 [fan object of mass 2 kg is thrown up from groend reaches a height of 5 mand falls
back to the Earth {neglecting air resiztance ), calculaie:
(i)  workdone by gravity when object reaches at 5 m heighi.
(i) workdona by gravity when the object comes back to the Earh,
(i) total work done by gravity in upward and downward motion, Also mention
physical significanca of the result.
[Ans: (ij=38J [ii) =88 J (i) O J significant gravily does nol lransfer any energy (o object]
4.7 An elecirical motor of one horse power is used to run a water pump. Waler pump
takes 15 minutes ta fill atank of 400 Ftres at a height of 10 m, Find:
(a)} aclualwork done by alectric motor to full tha tank
(b} percentage efficiency of motor. Assume that mass of 1 lifre of water =1 kg).
[Ans: {a) 71400 Jb) 11.6 %)
4.8 Apassengerjust arrived at the airpert and dragging his suitcase toluggage check in
desk. He pulls sirap with a force of 200 N al an angle of 457 to the floor o displace it
50 mto the desk, Determine the value of work done by him on the suitcase,
(Ans: T k)
4.9 Abody of mass 0.5 kg travels in a straight line with velocity v =& where a=5ms".
Find the work done by the net force when it travels during the displacement from
y=0to5m, {Ans: 7B1.25J)
410 A 200 g apple iz lifted to 10 m and then dropped. What is its velocity when it hits the

ground? Assume thal 75% of work done In lifting the appla is transferred to K.E, by
the time it hits the ground. (Ans: 12.1ms")




After siudying this chapter, the gtudents will be able (o:
Distinguish betwean the siructuras of crystalling, amorphous, and polymense scids,

Desorite that Seformation of salids in one dimension [That i@ 8 caused by o foroe gnd: that in one
dimansion, the deformation can by tensile or compressive,]

Diafine and wse the tenms etrese, sirain and the Young's modules

Dieecrita an axparimant to determire tha Young's madulusof 2 matal wire,

Descrits: and usa the terms alaslic deformation, plaslic defarmaton and elasiic limit

Justify why and apply the fact that the area under the force-estenalon graph represens the work done
Datarming the elastic polential ensrgy of a matenad [That is deforrmed within is Ilrmd

progoriaality frorm B ared undar tha feroe-galansion graph, Also Slate and use En-_ & :n:2 Tar @
matenal deformed withen its limit of proportionality]

Silale and use Archimedes' principle and Bolation
Justify howe ships are engineersd to lloatin the sea

Define and apply the s seady (Sreamiine or laminan) Bow, incomgressible fow and non -
wincous flow as applied fothe motion of anidea fuid,

‘Slate and use equation of continuity 1o sohe problens

Explain that equeszing the end of & rubber plpe results inincrease In flow welooity

Justify that the emmtion of corlinuity is a famm of the principle of conservation of mass.

Jussily thal the pressure difference can anse from diferart rales of iow of a Tuid [Bamaulll fect]
Explain and apphly Bamoul's aquation for honzontal and wartical Susd flow.

Explain vy read fluids ane vwscous fluids,

Diescnibs how Yiscous forces in & fuld cause a retarding force on 80 object moving theough €,

Diaeonba super fluidiy [As the stete in which & ligud will exparisnce zarm yvescosity, Studants ehould
ko thea implications of this state e.g. this aliows for super fluids Io creep over the walls of containers
b3 “ermply’ thiemeslves, |t also implss that I you stir & superfiuld, the vorices will Keep soinning
Iredetimitaly,]

@ Analyzethe raal-world applications of the Bermaulli effect [Forexample, stomizers in pecfume bottlas,
e swinging trajeciory of a spinning cricket ball and the B of 3 spinning godf tall (the Magnus effect),
the isme ol Venture ducls infiller pumps and car engineens 1o adjust the Nev of Thid, eie.]

YT E e SRR 9

ﬁat@n’als have specific uses depending wpon their characteristics and properties, such
as hardness, ductility. malleability, etc. Whal makes stesl hard and lead soft? |1 depends
upon the structure, the paricular order and bonding of atoms and molecules in a
miaterial. Similarly, the study of fluids in moticn is relatively complicated but analysis can
be simplified by making a few assumptions. The analysis is further simplified by the usa
of two important conservation principles, the conservation of mass and conservation of
anergy. The law of consersation of mass gives us the sguation of continulty while the law
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of consarvation of energy is the basis of Bernoulli®s theoram.

51 CLASSIFICATION OF SOLIDS
Crystalline Solids

In crystalline salids, there is a regular amangement of atoms d |
and molecules. The neighbours of every molecule are e g
arranged in a raqular pattern that is consistent throughout the )

crystal. There is, thus, an ordered struciure in crystalling solids.

Most solids, like metals and ceramics have a crystalline

structure, This means thair aloms, molecules or ions are .
arranged in a regular pattern. The arrangement of O ()
molecules, atoms or ions within all types of cryslalling solids B e
can be studied using various techniques such as X-ray

Diffraction (XRD), Transmiszion Electron Microscopy (TEM). It

should be noted that atorms, molecules or ions in & crystalline

solid are nof static. For example, each atomin a crystal vibrates

about a fixed pont with an amplilude that incroazes with rise in | Ghssy and crystaline-solid-
temperature. It is the average atomic positions which are BMorandiangangs order
perfectly ordered over large distances.

The cohesive forces betwean atams, molecules or ions in crystalline solids maintain the
sirict long-range order inspite of atomic vibrations. For every crysial, however, there isa
temperature at which the vibrations become greatar that the structure suddenly breaks
up, and the solid melts, The transition from solid (order) to liquid (disorder) is, therafore,
abrupt or discontinuous. Every crystalling solid has a definite melting point e.g.. Guariz,
Calcite, Sugar, Mica, diamand, ale.

Amorphous or Glassy Solids

The word amorphous meaans without form or structure, Thus, in amorphous solids thera
is no regular arrengement of molecules like that in crystalline solids, We can, therefore,
say that amorphous sclids are mone [fke liquids with the disordered structure frozen in.

For example, ordinary glass, which is a solid at ordinary temperature, has no regular
arrangement of molecules. On heating, it
gradually softens inlo a paste like state
befora it becomes a very viscous liquid at
almost B00°C. Thus, amorphous solids
are also called glassy solids. This type of
solids has no definite melting point .9.,
plastic, glass, fused silicon, eic,

Polymeric Solids

FPolymiers are solid matenials with a structure that is intermediate bebween order and
disorder. They can be classified as partially or poarly crystalline solids.

Cryslalline solids BurosploLs solids




M

FPolymers form a large group of naturally occurring and synthetic materials. Plastics and
synthetic rubbers are termed as polymers because they are formed by polymerization
reactions in which relatively simple molecules are chemically combinad into massive
long chain molecules, or threa-dimensional structures. Thase materials have rather low
specific gravity compared with even the lightest of metals, and yet exhibit good sirength

fowelght ratio.

Polymers consist whally or in part of chemical combination of
carbon with axygen, hydrogen, nitrogen and ather metallic or
rion metallic elements, Polythene, polystyrene and nylon, etc,
are examples of polymers. Natural rubber is compased in the
pure state entirely of a hydrocarbon with the formula (CH, ).

5.2 MECHANICAL PROPERTIES OF SOLIDS
Deformation in Solids

If we hold a soft rubber ball in our hand and then squeeze it,
the shape or volume of the ball will change. However, if wea
stop squaazing the ball, and open our hand, the ball will retiem
to its original sphencal shape, This has been llustrated
schematically in Fig. 5.1,

Similarly, it we hold two ends of a rubber string in our hands,

For Your Information

and move our hands apart to some extent, the length of the g 54
string will increase under the action of the applied force (a)Originai rubber ball

exerted by our hands, Greater the applied force, larger willbe (B) Sgueezed rubber ball
theincrease in length. Mow on removing the applied force, the xﬁ““ e L
string will return to its orginal length. From these examplas, it (¢} Rubber ball after ramoving

is concluded that deformation {i.e., change in shape, lengthor o e

volume) is produced when a body is subjected to some £

external force, o

In crystalline solids, atoms are usually aranged in a certain @) Ursnedched unit o=

ordar, Thase atoms are hald about their equilibrium poasition,
which depends on the strengih of the inter-atomic cohesive
force between them. Under the influence of extermnal forca,
distartion accurs in the solid bodias becausea of tha
displacement of the atoms from their eguilibrium position and
the body i2 2aid 10 be in a =tate of stress. After the removal of
external force, the atoms return to their equilibrium position,
and the body regains its original shape, provided that external
apphed force was not oo greal. The ability of the body o
return to its original shape is called elasticity, Figure 5.2,
illustrates deformalion produced in a unit cell of a crystal
subjectad lo an extarnal applied forca.

T

.". i
(Exh L ol unckar aulward
siralching force

‘?"". ._1__:,
CoFED

2] Unli call under Invand
apmlied force

(Uit ol crftes ramdving
apohad force

Fig. 5.3
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5.3 STRESS,STRAINANDYOUNG'S MODULUS

The resulls of mechanical lesls are usually expressed in larms of stress and strain,
which are definad in terms of applied force and deformation.

Stress

It is defined as the force applied per unit area to produce any change in the shape,
volume or length of a body. Mathematically, it is expressed as:

Force (F)
Araa (A}

The Sl unit of stress (o) is newlon per square meter (N m™), which is gven the name
pascal (Pa). Siress may cause a change in length, volume and shape, When a stress
changes length, it is called the lensile strass, when it changes the volume, itis called the
volume stress and when it changes the shape, itis called the shear siress,

St.l'ﬂil'l s RS
-I‘I—l-: 15 i —

Sfrain is a measure of the deformation of a solid when L

siress is applied to it. In the case of deformation in

one dimansion, sbain is defined as the fractional

change in length, f AL isthe changeinlengthand L is

the original length (Fig. 5.3 (a), then strain is given by

Changainlength (AL) 5o
Original length (L)

Since strain s the ratio of lengths, it s
dimensionless and therefore, has no units. I strain
£z due to tensde strass o, It is called tensile sirain,
and if it is produced as a result of compressive stress
a, itis termed as compressive sirain.

In case when the applied stress changes the volume,
the change in volume per unit volume is known as
volumelric strain as shown in Fig. 5.3 (b), thus

Stress (o) =

Fig, 5 3{a}; Tensile sirain

Sirain (e} =

Volumetric strain = f:}"' --------- (5.3)

Let y be the distance between two opposite faces of a
rigid body (Fig. 5.3=c), which are subjected to shear
siress one of iis face slides through a distancea Ax,
thenshear strainis produced which isis given by

AX
1= _1.-'_ BRPLE el + (54) Fig. 5.3(ch: Shesr strain
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However, for small value of angle B, measurad in For Your information
radian tan@ =, sothat Althouah il 18 named afler the 191h
it ; EE T e (5.5} cantury British Sclentist Thames
- Young, The concept was developed in
Young's Modulus 1727 by Laonhard Eular.

;;r e B R 1'|='|'.\_-' o e S e

The stress applied per unit strain Elastic constants for some materials
is called Young's modulus Material | Young's Bulk Shear
Modulus | Madulus | Modulus
: Tensile stress AN m? | 107N m? | 107N m®
Le. Y= - Alimmiiniem i) o 1]
Tanzile strain T 5 = 70
Brass a1 61 6
o FJ’IA L {ELE} L'iﬂﬂl:l'ﬂlﬂ 25 = =
o ALIL, _Copper 10 140 44
Diamond 1120 5S40 450
It has the sama unil as that of stress |a, Glass 55 a1 23
N m~ or Pa. The value of Young's modulus o8 14 8 3
of different material is givenin Table 5.1, _Lesd 15 T.7 S8
There are varcus methods to determing :LFTW :gn 1251:} EEI
the Young's modulus of a wire. One of the T oy s -
method is Seare's method. Nater g 27 5
5.4 DETERMINATION OF YOUNG'S MODULUS OF AWIRE

Experimentally, the magnitude of Young's modulus for &
material in the form of wire can be found out mostly with
help of seard apparatus as shown InFig. 5.4,

It consists of two wires, auxiliary or reference wire and test
wire [experimental wire) of equal lengths of same material
having same diameters attached to a rigid support, Both
wires are connected to horizonial bars {frames F, and F.)
al the other ends. Hang a constant weight to the hook of
horizontal bar of reference wire and hanger on testwireso o

that wire remains siretched and free from kinks. bl M“LTM
Procedure Mook
The following procedure is adopted for finding Young's
modulus of awire expanmeantally, EE:::;:
1. Measure theinitial length L,"of the wire using a metre b -
scale. Fanger with [ »

derted [HET
welghis

Fig. 5.4: Seade’s apparatus

2. Measure the diameter d' of the wire using a screw
guage. The diameter should be measzured at several
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differant points along the wire and take average.

. Adjust the spirt level so that it is in horizontal position by tuming the micrometer.

Record the micrometer reading to use it as the reference reading.

Load the test wire with & further weight, the spint level tilts due to elongation of the
test wira.

. Adjust the micrometer screw 1o restore the spint level in the horzontal position,

Subtract the first micrometer reading from the second micrometer reading to obtain
the extension of the lest wira.

Calculate stress and strain from the following formaula:

sess < Wt _F _mg [

Areacfwire A = A&teel rod and a rubiber band

-are subjectad fo same force,

Strain = AL _ Change in length Which ane will be streichad
L Original length i

Repeat the above steps byincreasing load on test wire to obtaln more values of
stresses and strains,

Plot the above values on stress strain graph, it should be straight line. Mow
datermine the value of slope Y. Tha value of slope is equal to Young's modulus of

wire,

5.5 ELASTIC DEFORMATION, PLASTIC DEFORMATION AND

ELASTIC LIMIT

In a tensile test. matal wire |5 extended at a specified deformation rate, and siresses
generaled in the wire dunng deformation are continuously measured by a suitable
elactronic device fitted in the mechanical testing machine. Force-elongation diagram or
stress-strain curve is plotted automatically on X-Y chart recorder, A typical stress-stramn

curve for a ductile material is shown in Fig. 5.5,

Inthe initial stage of deformation, stress isincreased
lineary with the strain till we reach point A on the
siress-strain curve. This is calked proportional limit
je,). It is defined as the greatesi stress that a
material can endure without losing siraight Ene
prapartionality betwean stress and strain. Hooke's
law which states that the strain (deformation) is
directly proporional to stress (force or load) is
obeyed in the region OA, From Ao B, siress and
strain are nof propartional,

Elastic limit

Shress (o)

SHan

Fig. 5.5: Slress-strain curwe of a
Pyl cuciie miaberial,

if the load is removed at any point between O and B, The curve will be refraced and the
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miateral will return to s onginal length. In the region OB, the matesial is said to ba
elastic. The point B is called tha yield point. The value of stress at B is known as elastic
it o,

Plastic Deformation

If the siress is increased beyond the yield stress or elastic limit of the material, the
spacimen bacomeas permananily changed and does nol recover its original shape or
dimension after the stress is removed. This kind of behaviour is called plasticity. The
reqgion of plasticity is represenied by the porion of the curve from B to C, the point C in
Fig. 5.5 reprasants the ullimale tensile strength (UTS) o, of the matarial, The UTS s
defined as the maximum stress that a material can withstand, and can be regarded as
the nominal strength of tha material. Once point C corrazponding to UTS s crossed, the
material breaks at point D, responding the fracture stress (o).

Ductile substance

Substances which undergo plastic deformation until they break, are known as ductile
substances. Forexample, Lead, copper and wroughtiron are ductile substances.

Brittle Substance

The substances which break just after the elastic imit is reached, are known as britile
substances. For example, glass and high carbon steel are britle. Moreover, Berdlium,
Bismuth, Chromium are also brittle metals.

Example 5.1: Astosl wire 12 mm In diameter |s fastened to a log and is then pulled
by tractor. The length of steel wire between the kog and the tractor is 11 m. A force of
10,000 M is required to pull the log. Calculate the stress in the wire.

Solution:
As tensile siress = nFn _
A 10,000 N Why doss & ship made of
T 3.14(6x107m ) m.f;ﬂl ﬁﬂm‘iwn
= 8846 < 10F N m™
= 88,46 Mpa

5.6 STRAIN ENERGYIN DEFORMED MATERIALS

When a body is deformed by a force, work is done agains! elastic restoring force, It is
stored in it as its potential energy and is equal fo the gain in potential enargy of the
molecules of a body due to the displacement of these molecubes from their mean
positions.

Derivation of Expression for Energy Stored in a Stretched
Material

Consider a material in the form of a spring as shown in Fig. 5.6, Ris stretched by a force
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F through extension x. As the extension is directly proportonal
to the stretching force within the elastic limit, therefora the force
incraases uniformly fram zero 1o F as shown in Fig. 5.7 Thus, the
average forca that stretches the spring through Ax is1/2F. Hence
work done by the stretching force will be given as:

Work done = Avarage force = Distance in the direction of the force

W=%F:-:M PR e 15.7)
From Hooke's law F= kiAx)
Thearefora, W = [%Hﬂ.x}.fﬁﬂ =% KAx
or W = AreacfOPQ

The work done by the stretching force is stored in the
spring as its strained energy and is equal to the potential
energy stored in its molecules.

Strained energy stared inthe bady =E = ;— Fax = %ku’

Alternative Forms of Elastic P.E.

Let A be the cross-sectional area of the material of
length L and AL is the extension in length, then the
volume of the material will be AL. Hence, the sirain o

energy per unit volume of the material will ba given by

"

W

if - 1 % F AL Fig. 6.7
"2 A1
F-:'.-r Your Information
u-_].}gﬁxl—i.&. ......... {E.E}
o G HE 1 The smount of work dons in
siratching & maienal is sgqual bo tha
;- 1;{%5;{ =train - {E-g} average force applied mulipiad
2 by the distance moved,

Therafore, the area under & foroe-

exiension graph represents fhe
53 ="'|"'}=:E work done 1o stretch the material
- L Viork done fo streich the material
i= also equal 1o elastic PE. stonad

in the majerial.

From equation of Young's Modulus (Eq. 5.6}, we have

Futling the above expression in Eg. (5.8}, strain
enargy per unit volume is:

=y BE AL Ay MY (B0
This equation is used to calculate the strain enargy stored in the material when it is
stressed.
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5.7 ARCHIMEDES' PRINCIPLE AND FLOATATION

An air-filed balloon immediately shoots up to the surface when released under the
surface of water, The same would happenif a piece of wood is released under water. We
might have noticed that a mug filled with water feels light under water bul feels heavy as
soon as we lake it out of water,

Mora than two thousand vears ago, the Greek sciantist, Archimades noticed that thare s
an upward force which acts on an object which is kept inside a liquid. As a result, an
appareni loss of weight is cbserved in the object. This upward force acting on the object
is called the upthrust of the liquid. Archimades’ principle states that:

When an object is totally or partially immersed in a liquid, an upthrust
force acts on it equal to the welght of the iquid it displaces.

Consider a solid cylinder of cross-sectional area A and haight himmersed inaliquid as
shown in Fig. 5.8. Let b, and i1, be the depths of the top and bottom faces of the cylinder
respectively from the surface of the liguid. Than

—_——
h,=h,=h e £ Kl | I o —
E P
If 7. and P, are the liquid pressures at dapths &, and b, T ':, ~ R
respectively and g is its density, then f, 1'
P o=poh, l "
and F,=pgh, v
Lat the force £, be exerted at the eylinder top by the 15
hiquid due to pressure P, and the force F, be exerled "
at the bottom of the oylinder by the guid due to P,, e
Then Fig. 5.8: Uplhrust on & body

and F,=P.A=pgh A

F,and F, are the forces acting on the opposite faces of the cylinder, Therefore, the net
force F will be equal to the diference of these forces. This net forca F on the cylinder is
called the upthrust of the liguid. Hence

F.?_FI =~ ﬂgh:'q_pghr-'di Far Your information

= Archimedes was born aboul 287

= PPAR— )i (5.12) BCE. In Syracuse on the lgland of

o Sicily. He was killed by 5 Roman

or Upthrustofiquid = pgAh Scidier after he refused 1o leave
hie mathematical work;

Hara Afris tha valume Vol the evlinder and is equal to the valumea of the liquid displaced
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by the cylinder, therafare, pgV/is the weight of the liquid displaced, This equation shows

that an upthrust acts on a body immersed in a liquid and is equal to the weight of liquid
displaced, which iz according to Archimeada's principle.

EXAMPLE 5.2: Awooden cube of sides 10 om each has been dipped completely in
water. Calculate thie upthurstof wialer acting onit.

Solution:
Given:
Length of side L=1Mem=01m
Volume Vel=0Iimi=1x10"m
Density of walar g = 1000 kg m™
Upthrust F=7%
Using Archimede's principla

Upthrust of water = gV
={000kgm  x98ms ¥ 1x 107 m'
Thus, upthrust of waler acting on the wooden cube is 9.8 N.

Floatation

An object sinks if its weight is greater than the upthrust force acting on it Howewer, an
object floats if its waight s egual or less than the upthrust, When an object loals ina
fluid, the upthrust acting on it is equal to the weight of the object. In case of floating
object, the cbject may be partially immersed. The upthrust is always egual io the weight
of the fluid displaced by the object. This is the principle of floatation, It states that:

Afloating object displaces a fluid having weight equal to the weight of the object.
Archimedes’ principle is applicable on liguids as well as on gases, We find numenous
apphcations of this principle in aur dady life,

Applications

Following are some important applications of Archimedes principle,
1. Hot-air balloon

The reason why hol=air ballcons nse and float in mid=air is bacause
of the density of the hot-air balloon is kess than the surrounding air,
Whan the buoyant force of the hot-air balloon is more, it starts to
rige. This Is done by varying the guantity of hot air in the balloon,

2. Wooden block floating on water

Awooden block floats on water. 11 is because the weight of an equal volume of water is
graatar than the waight of the block. According to the principle of floatation, a body floats
if its displaced water is equal to the weight of the body whean it is partially or completely

Fig. 5.9
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immearsed inwaltar,
3. Ships and boats

Ships and boats are designed on the same
principie of floatation. They camy passengers
and goods over waler. It would sink in water if
its weight including the weight of its
passengers and goods becomes greater than
the upthrust of water,

4., Submarine

A submaring can ravel ovar as wall as undar
water using the same principle of flioatation.

it floats over water when the welght of water
equal o ils volume is greater than its weight.
Under this condition, it is similar 1o a ship and
reamains partially above waler level, It has a
system of tanks which can be filled with and
emptied from seawater. When these tanks are
filled with seawatar, the weight of the
submaring increases. As so0n as its weight
becomes greater than the upthrust, it dives
inta water and remains under water, To come

Fhg 5,40 {a): A ship foating over waler

Prrisaape Arfanna

b
Toweer =
~

Sonar Porthols

up on the surface, the tanks are made empty 9510 (b): Submarine

fram seawator.

Example 5.3: An empty meteorological balloon weighs 80 M. It is filled with 10 cubic
metres of hydrogan. How much maximum contents the balloon can lifl besides its own
waight? The dansity of hydrogen is 0.09 kg m™ and the density of airis 1.3 kgm™,

Given:
Weight of the balloon w BOM
Volume of hydrogen W = 10m

Density of hydrogen  p, = 009 kgm”

Density of air {0 = 13kgm”’

Weight of hydrogen  w. =7

Waight of the contents w, =7

Lpthnust F = Weight of air displaced
= pah

=13kgm x9.8ms x 10m’

=1274 N
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Weight of hydrogen  w, = pVg

=0.08kgm” x10m' x 9.8 ms”

8E2N

Total weight lifted F = oW, W
To lift the contents, the total weight of the balloon should not exceed F,
Thus W +uw. =F

BON+882N+w, =12T4AN

ar W, =38 N
Thus, the maximum weight of 41 N can be lifted by the balloon in addition (o its own
weight.
5.8 STEADY, NON-VISCOUS AND IDEAL FLUID

Mowving fluids have greatimporance. In order to find the behaviour of the fluid in mofion,
w consider their flow throuwgh the pipes. When a fluid is inmotion, its low can take place
in bwoways, either straamline or turbulent,

Streamline or Laminar Flow L

The flow is said to be streamline or laminar low if - - -
every particle that passes a particular point, moves ﬂ‘-—“ﬂ_
along exacty tha same path, as followed by particles ,

which pa { that points earier, Fig. 5.11: Streamlines laminar fow)
In a steady flow of a fiuid, the motion of the particles is smooth and regular, as shown in
Fig. 5.11. The smooth path followed by fluid particles in laminar flow is called a
streamiine. The streamiine may be the straight or curved and tangent to any point gives
the direction of flow of a fluid. The different streamBnes cannol cross each other.

Example: Afluid flowing in & pipe as shown in
Fig. 5.12 will have certain velocity v, at P, a
valocity v, al Q) and so on, If the velacity of a
particle of the fluid at P, Q and R does not
change with the passage of time, then the flow  Fig. 542: The velocities of the parlicles at
is said to be steady flow or streamline flaw, ""E‘”WF':'"‘“““ slreamiing.

The line POR which represenis the path followed by the
particke is called a sireamiing. |t represents the fixed palh
followed by orderdy processing particles. In streamline flow, all
the particdles passing through P also pass through Qand R, It
means that tiwo streamlines cannot cross each other,

Turbulent Flow

The irregular or unsteady flow of
the fluld is called turbulent flow. Fig. 5:43: Tusbulent Now

=)
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Above a certain velocity of the fluid flow, the motion of the
fluid becomes unsteady and irregular. Under this
condition, the velocity of the fluid changes abruptly as
shown in the Fig. 5.13. In this case, the exact path of the
particles cannot be considered.

If two streamlines cross each other, then the particles will
go inone or in the other direclions and flow willnct be a
steady fliow. Such a flow i a turbulent flow. When the low  Formula One racing cars have a
is unsteady or turbulent, there are eddies and whirpools  streamiined des
in the motion and the paths of the particles are
continuously changing.

Ideal Fluid

Tha bahaviour of the fiuld which satisfies the following
conditions is called ideal fluid:

For Your Information

_ _ Doiphins have streamlined bodies
1. The fluld is non-wiscous La., there is no frictlional I Esalst their rovameant in wetes
force between adiacent layers of the fluid.

2. Thefluidisincompressible i.e., its density is constant.
3. The fluid motion is steady,
Rate of Flow
The rate of flow of a fluid through a pipe is the volume of
the fluid passing through any section of pipe per unittime.
Formula For Rate of Flow

Consider a fiuid flowing through a pipe of area If H' A (ﬁm\;‘l
of cross-section A as shown in Fig, 5.14. Let | )J -\_)
b

the velocity of the fluid be vand it flows through
the pipe for time ¢, then the distance coverad by u—-|
the fluld in time is:

e Fig- 5.14: Rale of fioew ol a liquid

whera 1 15 the length of the pipe through which the fluid passes in time £ Volumes of the
fluid passing through the pipain time ¢, is:
A=A
Wolume

Thus  The rate of flow of the bguid = -
Tirmme
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In Sl units, it 15 measured in cubic metre per second (m' 7). Sametimes, it is also
measured in litres persacond (L5 ).

Steady Flow

If the overall flow pattern does not change with time, the flow is called steady flow.
In steady flow, every particle of the fluid follows the same flow line as its previous particle.
5.9 EQUATION OF CONTINWUITY

Statement

The product of cross-sectional area of the pipe and the fluid speed
(le., Av) at any peint aleng the pipe is a constant. This constant Is
equal to the volume flow per second of the fluid or simply the flow rate.

Volume I

Thus Av = Conslant =

Consider a fivid flowing through a pipe of non=uniform
size. The particles in the fluid move along the same
hines in a steady state flow as shownin Fig 5.15, A,

we consider the fow for a short intersal of time A the ke—
LT

fluid at the lowar and of the tlube covers a distance Ax,
with a velocity v, , then distance covered by the fluid is: Fig. 5.¥5: Steady flow of B fluid

AX,

o

L . {5.15) Interesting Fact
Let A, be the area of cross-section of the lower end, then  £ar obtained the continuity
velurme af the fluid that Nlows into the tube at A, is: aquation for & incompressitiia flid
~ with a farge numbar of tarms in
V = A4,Ax, 1762, Later, it was transised by
ar V o= A vl = Truies defl from English in 1954,

If p, i= the density of the fluid, then the mass of the fluid contained in the shaded region
{ through A, )is:

Am, = Volume = Density
or Am= AV AL = B

Simidady, the mass of the fuid that moves with velocity 'v.'through the upper end of the
pipe having cross-sectional area A ' inthe sama time Atls given by

am, = 'q.r"'r:‘“ ® [
whera p. |5 the densily of the fluid flowing cut through A , and Am indicates small mass.

If the fluid is incompressible and the flow is steady, the mass of the fluid is conserved.
Thatis the mass flowing into the bottom of the pipe through A, Ina tima A must be equal
to the fluid flowing out though A, in the same time. Therefore,
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S0, Av.Alxp = Av Alxp,
or o R BRI e R R R {7 2

Equation (5.17) is called the equation of eontinuity. Since density |s constant far the
steady flow of incompressible fluid, therefore, the equation of continuity becomes:

TR S e I (5.18)

Equation {5.18) states that in steady flow, the rate of flow inward is equal to the rate of
flowy outward.

This eguation justifies the conservation of mass of the fluid which is flowing through
apipe.

EXAMPLE 5.4: A waler hose with an intemal diameter of 20 mm al the outlet
dischame 30 kg of water in 60 s, Calculste the water spesad at the outlet. Assume the

density of water is- 1000 kg m™” and its flow is steady.
Solution:

Internal diameterof water hose D =20mm =002 m

Radius r=0R2=0022=001m

Mass of water m =30kg

Time taken t =60s

Dansity of water g =1000kgm™

Spesd of water W= l' _ -

Mass flow per second mit = 30kgie0s i Bl S e
: 7 area decreases 88 mandated Ly e
= 0.5kgs continudy squalion.

Cross-sactional area A =xr
=344 x{0.00)

=3 idx1x10°m* Far Your Information

B - . = i
From equafion of continuity, the mass of water E;S,;?”“ of continuity is

discharging per second through area A is; 'm e i
pAv = Mass/Second (i) water flow in rivers and pipes

i} air faw mcduct and ventiation
_ Wags/ Sacond (R MRS
A

e 0.5 kg s
1000 kg m” * 3.14 % 107 m’

= E:Ei“g =06m

3.14

¥
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5.10 INCREASEIN FLOWVELOCITY

We can increase the flow velocity of water in a rubber pipe by squeezing it, When we
squeeze the rubber pipe, we decrease the crozs-sectional area through which the water
flaws. According to the equalion of conlinuily,

whera A is the cross-seclional area and v is the flow velocily, By decreasing the cross-
sectional area (4, <A ), the velocity of the water (v,) must increase to maintain the same
flow rate. Therefore, squeezing the rubber pipe increases the flow velocity of water,

5.11 BERNOULLI'S EQUATION

Asg the fluid moves through a pipe of varying cross-section and height, the pressune will
change along the pipe. Bernoulli's equation is the fundamental equation in fluid
dynamics that relates pressure to fluid speed and height,
In deriving Barnoulli's aquation, wa assumea that the fluid |s incompressible, non-viscous
and flows in a steady state manner, Lel us consider the flow of the flukd through the pipe
intime f, a5 shownin Fig. 5.16. Shl s
The force on the upper end of -
the fluid iz P.A, where P, iz the [ *\I T,
pressure and A, is the area of |
cross-saction at the upper end,
The work done on the fluid, by
the fluid behind i, In moving it
through a distance Ax,, will be;
W, = FAx = PAAx,
Similarly, the work done on the

fluid at the lower end is. Fig. 5.16: An ideal flow of fluid through a non-uniform
W, = - F.Ax, = -PAAX, cross-secton pip al diferent haights.

whera P, is the pressure, A . g the area of cross-saction of lower end and Ax, is the
distance moved by the fluld in samea time interval {, The waork W, s takan lo be —ve as this
work is done against the fluid force, The work done will be:

Ww=Ww +
or W=PAAX-PAAR. ..o {5.19)
If v, and v, ara the velocities at the uppear and lowar ends respactively, than
W=FAuvt- P Aw
From equalion of continuily (Eq. 5.18)
How does the shaps of & cunmebal

A, =AY, in baseball relate o Bemoulli's
Hence Av, t=Auv 1=V (volume) principka?

Brain Teaserl
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S0, we have
ol ST L AR R (5.20)

if m Is the mass and p is the dansity, then V = % :

5o, Eq. (5.20) becomes;

A parl of this work (g utiized by the fluid in changing its K.E. and a part is used in
changing its gravilational RE.

Change in K.E. AKE = %muf— %_mv," .............. (5.22)

Changein RE. ARE=mgf—mghy .ccccceo. J5.23)
whera h, and b, are the heights of the upper and lower ends respactively.
Applying the law of conzervation of energy to this volume of the fluid, we have

1
= -ﬂ]%:imvf—%ﬂw1l+mm—lﬂgh1 .............. . (5.24)
Rearranging the Eqg. (5.24), we have

1 £
F:"'ipvf"'i-‘gnl =Pz+':éi-“‘rz "'F"gh:

This is Bemoulli's equation and is offen expressed as:
P+ ::_ pv* + pgh = constant

5,12 USES OF BERNOULLYI'S PRINCIPLE

Anumber of devices operate by means of pressure difference that results from changes
in the speed of the fluid.

1.  Aeroplane Wings / ﬂ
Thewing of an asroplane is designed to deflect the

air 0 thal sireamlinas are closer together abovea __'
the wing than below it as illustrated in Fig.5.17. We
have seen that where the streamlines are forced
closer together, the speed is faster, Thus, air is
iravelling faster on the upper side of the wing than
on the lower. The pressure will be lower at the top of the wing, and the wing will be forcaed
upward and the lift of an aeroplane is due to this effect.

2. SwingofaBall
When a ball is thrown or kicked with spin, the ball is mada smaoother on ona side by the

Fhg. 5AT: LIt of an aercpans
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bowler and remains rough on the other side, The air
moves faster ower rough side and slows ower the
smaoother. According to Barnoulli's equation, the faster
moving air creates lower pressure, while the slower
moving air creates higher pressure, this pressure
differance generates a sideways lorce, known as
Magnus effect which causes the ball to curves in the air.

3. Filter Pump

Afilter pump has a constriction
in the centre, so that a et of
watar from the tap flows faster
here, This causes a drop in
prassure near it and air,

Fig. 5.18: Turbulent flow

Adr
therefore, flows in from the f &
side lube. The air and water e

c

together are expalied through ol g
the lower part of the pump, | | Low
4. Carburetor Fig. 5.19: Turbulent flow T s
The carburetor of a car engine uses a Venturi duct to -
feed the correct mixture of air and petrod to the cylinders. 1
Air is drawn through the duct and along a pipa to the Fig. 5.20.

cylinders. Atiny inlet at the side of duct is fed with petral. Carburesor of an engine

The air through the duct moves very fast, creating low N
pressure in the duct, which draws petrol vapours into ﬂ_ -
the air stream. ;
5. PaintSprayer

Astream of air passing over a tube dipped ina Bguid will
cause the liquid to risa in the tube as shawn in Flg. 5.21.
This effect is used in perfume bollles and paint
sprayers. Actually when the rubber ball of atomizer is
squeazed, the air is blown through tube and it rushes
out through the narrow aperture with high speed and if
causes fall of pressure. So, the atmosphenc pressura Fig, 5.21: A siream of 8F passing
pushes the perfume upleading to the narrow aperfure,  overatubedppedin s liguid.

6. Venturi Relation

Consider a pipe within which a fluid of density p s flowing through different areas of
cross-section as shown inthe Fig. 5.22.

Lel A, be the cross-sectional area at wide end and A, be the cross-sectional area al
narrow portion.

Famnl
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Supposa that v, and v, be the flow speeds at the
wide and narmow portions respeclively. Pressure
P ard P, indicate the liquld pressure at both
the portions by connecting the limbs of the |
manometer. ]

As the pipe I8 placed horizontally, therefore, we
consider that average potential energy is the same
at both places whila using Bemoulli's equation.

Thus, Bermoulli's equation can be written as; Fig. 5.22° Ventr meter
1 1
P+—pv'= P+—pv’
1 E,P i 2 El:’ 2
of P-P= 3 v’-lpur’ w
1T = S P TP it is claar from the rosult of
1 Bermoulli's Equation Tor harzontal
- B ] (T — (5.25) pipe that “whare speed is high, the
2 preeasuns will balow®,
From the equation of continuity: Msihematically,
Awi = Aavy P+ 4 v’ constant
Ayl
or Hi = sty e
Ay

Az the cross-sectional area A, is small as compared o the area A, as is clear from the
figure, Le. A < A S0, v, will ba small as comparad (o v,. Thug, tha spead of the fuid s
very slow in wider porion of the pipe as compared to the nammow portion, So, we can
neglect v, on the right=hand side of Eq.(5.25), Hence

P1 = P_; = %pp; ................. {52&]‘

This is known as Ventur relation, which is used in venturi meter, a device used to
measure speed of liguid flow,

Ta Torricelli's Theorem

A simple application of Bernoulli's equation is shown in
Fig. 5.23, Suppose a large tank of fluid has two small
orifices & and B on it, as shown in Fig. 5.23. Let us find
the speed with which the water flows from the orifice A,

Since the orifices are so small, the efflux speeds v, and
v, will b& much larger than the speed v, of the top
surface of water. Wa can therefore, taka v, as
approximately zero. Hence, Bernoulli's eguation can |
be writtan as:

; 3. IFigy.5.23:
Rt opgh,=Ft 7P + pgh, A lenk containing fluid with a arifice,
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But P = Pz = Almaspheric pressure
Therefore, the above equation becomes:
V=l s (5.27)

This is Tomiceli's theorem which states that:

The speed of efflux is equal to the velocity gained by the fluid in
falling through the distance (h, - h.} under the action of gravity.

Motica hal the speed of the efflux of liquid is the sama as the speed of a ball that falls

through & height (k, - h.). The top lavel of the tank has moved down a little and the PE,
has beentransferred into K. E. of the efflux of fluid. If the orifice had been pointed upward
al B as shown in Fig.6.4, this K_E, would allow the quid o rise to the laval of water lank,

513 VISCOUS DRAGAND STOKES' LAW
The frictional effect between different layers of a flowing flusd and Gases ot J°C

iz described in terms of viscosity of the fluid. Viscosity Matesal m‘fﬁﬂa,
measures, how much force is required to slide one layer ofthe a5 0019
liguid over another layer. Substances that do not flow easily,  Acstone 0.795
such as thick tar and honey, &tc., have large coefficients of  Methanal 0510
viscosity, usually denoled by Greek letter 'v'. Substances Beazene 0-564
which flow easily. like water, have small coefficient of Yvsler 0804
viscosites, Since liquids and gases have non zero viscosily, Ethancl 1004
therefare, a force is required if an object is to be moved g‘;;“:n ;g

through them. Even the small viscosity of the air causes a

large retarding forca on a car as it traveds at high speed. If you
stick out your hand out of the window of a fast moving car, you -

can easly recognize that considerable force has to be exerted
on your hand to move it through the air. These are typical

examples of the following fact,

An object maving through a fluld experiences & retarding force
called a drag force. The drag force increases as the speed of
the object incraases.

Even inthe simplest cases, the exact value of thedrag force is
difficult to caleulate. However, the case of a sphare maoving
through a fluid is of great imporiance.

The drag force F on a sphere of radius r moving glowdy with

A chemney works st whan i
speed v through a fluid of viscosity n is given by Stokes’law a5 s tall and exposed to air
under: caments, which reduces the
pressuna atihe top and forces

B = e S R (5.28) the upward flow of smoke.

Howaver, at high speads the force is no longer simply proportional to speed.
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5.14 TERMINAL VELOCITY

Consider a water droplet such as that of fog falling verdically, the air drag on the water
droplet increases with speed. The droplet accelerates rapidly under the over powering
force of gravily which pulls the droplel rapidly downwand due to force of gravity
However, the upward drag force on it increases as the speed of the droplet increases,
The net force on the dropletis

Az the speed of the droplet continues toincrease, the drag force eventually approaches
the walght in the magnitude. Finally, whan the magnitude of the drag force becomes
equal to the weight, the net force acling on the droplet is zero, Then the droplet will fall
with constant speed called terminal velocity.

Ta find the terminal velocity v in this case, we use Stokes’ law for the drag force,
Equating it to the weighi of the drop, we have
0 = mg - 6mry,

v, = E'_?!';r ................ - {5.30)

The mass of the droplet is oV, where V' = % :r;rjis the valume of the sphere.

Substtuting above values in the Eq. (5.30), we have

w=2Ie -

Example 5.5: A tiny water droplet of radius 0.010 om descends through air from a
high building. Calculate its terminal velocity, Given that nfor air= 19 x 10" kgm™ 5" and
density of water p= 1000 kgm’™.

Solution:
r=1.0x10'm, p=1000kgm®, n=19x10"kgm's’
Putting tha above values in Eq. (5.31)
; _2x88ms*x(1.0x10*m} x1000kgm™
: 919 «10°kgm 's'
Tarminal velocity =1.1m&".

5.15 REALFLUIDS AREVISCOUS FLUIDS

Ideal fluid

It is & fluid that does nol have viscosity and cannat be comprassed. This type of fluid
cannot exist practicaliy.
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Real fluid

Al types of fluids that possess viscosity are classified as real fluids

Examples: Kerosana and casiorod, honey, atc.

Comparison of ldeal and Real Fluids

An exampla of ideal fud cannol be provided because it does nol exist in the real workd
but only in theory, However, every fluid thal we see around us like water, diesel, petrol,
honey, efc. are real fuids. Moreover, differences in viscosity can be found in real life, for
exampla, honay s more viscouws than water, Barmoulli's equation states that the speed of
fiuid flow is increased as a result of a simulaneous decrease in the potential energy of
the fluid or a decrease In the static pressure on the fukd. When a fluid is viscous, it
essenbally refers ta the thicknass of the fluid or the friction the fluid faces whike fluid
flows. Therefore, ideal fluids do not face the opposing force and have a non-viscous
floww, while real fluids have a viscous flaw,

* |deal fluids are incompressible, This means neither the density northe volume of the
fluid changes with pressure. Whereas, real luids are very much compressible.

= Bulk modulus inversely depends on the volume change. Volume change for ideal
fluids is zero, bulk modulus is infinite for ideal fluids. However, real fluids are
subjactad o valuma changa and theralore hava finite bulk modulus.

= Asideal fluids exist only in theory, itis not subjected to surface tension. However, for
real fluids, the surface tension becomes applicabla.

In simpler words, ldeal fluids are imaginary in nature which means they do not exist in
nature. Whereas real fluids very much existin naturea.

Ideal fluids do nol have any viscosity or can be said fo have zem viscosity, Moreover,
real fluids have viscosity

5.16 SUPERFLUIDS

Superfluidity is a property of fluids where they
have zero viscosily or are friclionlass. A
substance exhibifing this propery is suparfluid,
Superfluids flow without loss of kinetic energy.
In the laboratory, superfluids form in somea
substances at cryogenic iemperature, not much
above absolute zero.

Superfluids can flow through incredibly namow
spaces without any resistance. They can defy
gravity and flow upwards against it as shown in
Fig. 5.24,

Fig. 5.24
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Properties of Superfluids

Superfluids exhibils unique behaviour not seen in regular Auids and gases, For
instance, helium-3 can cEmb container walls and escape, a phenomenon known as film
flow, and can aven pass through container walls. When stirred, superfluids create
persistent vortices, unlike regular fluids that settle. Interastingly, when a8 container of
superfluid iz rotated, the liquid inside remains stll, unlike a cup of coffee. Superfluids
cansist of a mixiure of normal and superfluids components, with more superfiuld prasent
at lower temperatures, Some superfuids have high thermal conductivity and vanying
compressibility. It is important to note that superfluidity differs from superconductivity;
for axample, both suparfluids helium-3 and helium-4 do nat conduct alectricity.

Examples of Superfluids

Superfluids halium-4 is the most sludied example of superfluidity. 1 changes from a
fiquid to & superfiuids just a few degree below its boiling point of 452°F (-269°C or 4 K),
Superfiuids halium-4 moving as a narmal clear liquid, but it has no viscosity, This means
that once it starts to fiow, it keeps moving past any obstades,

Here are other supefluidity examples:

- Superfluid helium-3
® Some Bose Einztein condensates as superfluids (not all, though)

L] Atomic nubidium-85
Lithium-& atoms [al 50 nk)

* Parachules increase air resstance

# Atomic sodium (drag) by crealing a large surface
i aren, which copnderacts the forcn of

. Possibly insshe naulron stars a This slows dowmn the pe

superfluidity Applicatiuns fall, allowing ihvem ioland safely,

Currently, there are few practical uses for superflulds. Superfluid helium-$ zerves as a
caalant for high-field magnets. Both helium-3 and halium-4 are utilized in advanced
particle detectors. Researching superfluidity also helps us learn more about
suparconductivity.

Liquid helium is recognized for iis greal thermal R

conductivity and is used in cryogenic applications,
including cooling superconducting magnets, Superluds =;1 "chm’” up walls and
scientific research, and medical uses. Additionally, ovar eogas of comlainers because
it is employed in industry for leak testing and in the ey d“t':; ::Fadm friction like
praduction of electronic and optical products.
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QUESTIONS

(@ mattipie Choice Questions |

Tick [+ ) the correct option.
5.1 The region of stress-strain curve which obeys Hooke'slaw is.
(a) propartional limit {b)elastic imit  (c)plasticregion d) yield limit
5.2 Which ofthe following is moreefastic?
{a) Rubbear (b)Wood (c)Sponge (d) Steel
5.3 Which of the fallowing is polymer solid?
ia)Wool ib) Glass {c)Sodiumchloride  (d) Copper
5.4 The effect of decrease of pressure with the ncrease In speed of a fluid in horizonial
pipe s
(a) Torricelli's effect (b) Bemoulli's effect
) Venture's effect id) Doppler's effect
5.5 The pressurewillbe lowwhen spead ol a fiuld is:
(a)zero (B high () how (d) constant

o8 As perlaw of fluid Triction for sleady streamline fiow, thedriction
(a)varies proportionally to velocity of fluid
(b varies inversely proporional 1o pressura
{c)}does not depend on pressure
id)firstincreases then decreases

5.7 If a sfone iz submerged in waler and il weighs lass in water than in air. this
phanamenan is dus o

(a)the reduction of mass in water (b} increase of density in water
ic}buoyant force acting upwards (d) the gravitational force acting upward
5.8 The principls of floatation s a direct application of:
(a) Pascal's law () Bermoulli's principha
iclArchimedes' principal (d) Newion's third faww
5.8 Anideal flow of any fuid must satishy;
(a) Pascal [aw (b) Bermoulli's equation
(¢} Continuity equationanly (d) Both (b)and (c)
5.10 Thelift force experienced by an agmplans wings 15 primarily due o
i8] viscosity of air () density of air

ic) pressure difference above and below the wing id) gravitational farcea
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5.1 in madical field, a venlure mask, used o delver a known.oxygen concantration o
patients operatesis based on!

ia) Newlon's third law ib) Archimedes’ principle

(o) Pascalslaw (d) Bernoulli’s principle
5,12 Which af the lollowing is a dafining charactenstic of a superfiuidy

18) Zerm viscosity () Infinite density

(c} Zera temperalure (d) Infirite thermal conductivity
|! Short Answer Questions l

5.1 Whatis meant by (i) cohesiveforces (i) viscosity?

5.2 Differentiate between streamline and turbulent flow of a fluid,

5.3 How doses pressure changes with dapth in fluids?

5.4 Howisvanstionin pressure related to speed of a fluid?

5.5 Howthe flow rate is related 1o the cross-sectional area and velocity of the fluid?

5.6 How dovou study the variation in velocity of a flukd at different points in a hose with
varying diameter?

2.7 Why does anobject floator sink according fo Aschimedes Principhe ?

5.8 How does Archimedes reportedly discover the principla that bears his namea?

5.9 Why standing near fast moving train is dangerous’? Explain briefly.

§.10What are some potential applications of supearfluidity?

2.1 Differentiate between siress, strain and Young's modulus. Write down their S1units.

i‘ Eon:truttnd_ﬂespnn se Questions F

5.1 The ratio stress/strain remains constant for small deformation. What will be effect
on this ratio when the deformation made is very large?

52 When pure water falls on a flat glass plate, it spreads on the plate while the mercury,
when falls on the same plate gets converted into small globules. Why?

5.3 According to Bamoull's thearem, the pressure of a fluld should ramain unifarm
in a pipe of uniferm radius. But actually, it goes on decreasing. Why is i 507

8.4 Why wings of an aeroplane are rounded outward whils flattenad inward?

5.5 What is the difference in real fiuid, ideal fivid and superfluid? Which one of these
really exits in the ward? Explain,

5.6 Why iz the study of superflulds important for advancing our knowledge of low
iemperature physics?

I ! Enmprnheniiun Questions !|

5.1 Explain in detallthe classification of solids with respect to atomic arrangements.
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5.2
8.3
5.4
5.5
5.6
8.7
5.8
5.9

5.1

-

5.3

8.4

B85

5.6

-

5.8

Define sirain enengy and denve mathematical relation forit.

What is Archimedes' principle? Explain it in detall for finding upthrust.
Juzlify thal mass remains consarvad when a flukd flows through a pipe.
Explain the term superfiuidity.

State and derive equation of continuity.

State and prove Bernoulli's equation,

Gve some praclical equations of Bemoulli's equation,

Define ferminal velocity of 8 body and show that terminal velocity is directly
proportional to the square of radius of the body,

'@  Numerical Problems |

Asteel wire of length 2 meters and cross-sectional area 2 x 10" m’ is stretched by a
forca of 400 N. If the Young's modulus of steel is 2 x 10" N m™, calculate the
extension of thewira. {Ans. 0,002 )
A spring with a spring constant 200 N m™ is stretched by 0.5 m. Find the elastic PE.
stored in the spring. (Ans: 25J)
A copper wire of length 3 meters and cross-sectional area of 1 x 10° m’ is subjected
to a force of 500 N, Calculate the stress and strain produced in the wire,

(Ama: SxH° N m™, 0.00455)
A block of wood of mass 10 kg and density of 600 kg m™ is floating n water,
Calculate the buoyant force acting on the block. {Density of water = 1000 kgm™. )

[Ans. 88 N)

Water flaws through a pipe with a diameter of 0.05 m at a velocity of 2 m 37 If the
pipe narrows fo a diameter of 0.03 m, Calculate the velocity of water at namow
sachion. {ARs. 5B mE )
Water flows through a horizontal pipe with a velocity of 3 m s and pressure of
204,000 Pa at point 1. At the nozzle (point 2), the pressure decreases to
atmospheric pressure 101,300 Pa and the velocity increases to 14 m s, Calculate
the velocity of the water exiting the nozzle. {Ans; 14.3ms )
Alank filled with waler has a hola at a depth of 5m from the waltar surface. Calculate
the velocity of water flowing out of the hole. (Ans 9.9ma")
Calculate tha lerminal velecity of a spherical raindrop with a radius 0.5 mm falling
through air. (Ans 590 ms")




After studying this chapter, students will be able to:

& Describe the basic assumpbions of the knetc theory of gasses, [Including underslanding the
temperalune, pressure and densily conditicns under which an ideal gas is-a good epproximation of &
regl gas.|

Headn thad regions of qual temperaturs ane in therrmal equilibrium

Fefate a nee in temperature of an obgect 10.an incréase Inita miamal ensrgy

Apphy the eguation of stete for en deal gasjexpressad ag PV = nRT. whare n=amournt of subetence
{numbaraf moles}and as PV =0 ET, wharo N =numbaer of molsc es)

Ehate thal e Bollrrmann constant ks given by ks BN,

Use W = PAVfor the work done whan the wolums of a gas changas at consisni prassure,

Describe the difference between the work dona by a gas and thework done ona gas,

Define and use the first lw of thermodynamics (AL = PAV + W expressed in terms of 1hi increass
in infemal enengy, the heating of the system (energy trenslamed o the system by heating) and 1he
wirk dane on fha =ystem)

& Explain qualitslively, in terms of pariicies, the relationship Between the pressune. lempernture and
wolume of a3 ges{Speciicaty the bedow case:

(&) pressensand lemperature 28 conslant volume,

iB)  wolume and emperabise s constant pressure

i} presswne and volume 3l a constant termpenaturs]

Use the equation, ircluding a graphical representation of the ralabonship bebween pressure and
sl Tor & G Al constant lempearalure,

Jusatify how the firstlaw of thermodynamics expresses the conseration of enengy.

Relate a rise in lemperature of a body o an increasa in its intermal enamgy.

Skale bhe working principle of 3 heat engine,

Describe the concapt of reversible and irevarsitla processes.

Skate and axplain the second law of thamodynamacs.

State the working principle of Camol's sngine

Desciibae that refigarator |2 a heal engine opersting in revarss &3 thet of an kdeal neat erging.

Explain that an Increase In temperaiure incraases the dsondar of (he system,

Exphain thal incresse inonbropy means cdegradalion of anersy,

Explain that energy s degraded during &l natural processes.

ldgnkifying that syskam tends 1o become less crderdy over lirms.

Expiain thal Enfrapy. 3, 5 a Bermedynamic quaniily (hal relaies fo the degree of disorder of 1he
partichas in a syatam,

State that the Camot cycle aets a bmit for the efficiency of 8 heat engne &l the 1emperatures of iSs haat
resarvoirs give by Efficiency =1 -;:ﬁ
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ﬁhﬂmudynamhﬂs is the branch of physics thal deals with the relationships and

conversions between heat and other forms of energy. It encompasses principles
govemning the behaviour of systems at macroscopic scales, such as temperature,
prassure, and volume. Theremodynamics thus plays key role in technology, since
almost all tha raw energy available for cur use is iberated in the form of heat. In this
chapter, we shall study the bebaviour of gases and laws of tthermodynamics, their
significance and appplications.

6.1 ASSUMPTIONS OF THE KINETIC THEORY OF GASES

The kinebic theory of gases s a fundamental theory in physics and chemistry thal
explains the behaviour of gases based on the motion of their constituent particles. This
theory provides a macroscopic understanding of gas propedies such as pressura,
temperature, andvolume. Hera are the key assumptions of the kinetic theory of gases.

1. Gas Particles are Iin Constant, Random Motion

Gas molecules are in perpatual, random motlon, They movea in straight lines unti| they
collide with either another molecule orthe walls ofthe container.

2, Megligible Volume of Gas Particles

The volume of the individual gas molecules is negligible compared to the total volume of
the gas. This means that the particles are considered point masses with no significant
wolume.

3. Mo Intermolecular Forces

There are no attractive or repulsive forces between the gas molecules. The particles do
nat exert any force on each ather except during collisions,

4, Elastic Collisions

Caollisions between gas molecules, and between molecules and walls of the container
ara perfactly elastic. This means that there is no nel kbss of kinetic anergy durnng
collizions. The total kinetic energy is conzened,

3. Large Number of Particles

A gas contains a large number of particles. This large number allows for the use of
statistical methods to desenbe the properties of the gas,

6. Average Kinetic Energy is Proportional to Temperature

The average kinelic enargy of gas particles is direclly proportional to the absolute
temperature of the gaz. This implies that as the temperature increases, the spaad of the
gas paricles alsoincreaseas,

7. Pressure due to Particle Collisions
The pressure exerted by a gas on the walls of its container is due to the collisions of gas
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particles with the walls. The foree axerted by the particles during collisions ganarates
pressure.

8, Time of Collisions is Negligible

The time taken for collizions between gas panicles is extremely short compared to the
time between collisions. This assumption simplifies the analysis of padicle dynamics.
Limitations of Kinetic Molecular Theory

Real Gases

The aszumptions of the kinetic theory hold true for ideal gases, bul real gases exhibit
deviations due to intermolecular forces and finite molecular volume, especially at high
pressuras and low temperatures.,

In summary, the kinetic theory of gases provides a macroscopic view of gas behaviour,
linking macroscopic propearties like pressure and temperature to the motion of gas
paricles, and serves as a foundational concept in understanding thermodynamics and
statistical machanics,

Equation of State for an Ideal Gas

A gas that obeys kinetic theory of gases is termed as an ideal gas. Ideal gas equation is
givan by

PY=nRT ....(81)

Here P represents pressure, Vs volume, nis number of moles of the gas, Ris universal
gas constant (R =8.3145.J mol' K" )and Tis the temperature,

Equation (6.1) implies thal preduct of pressure and volume is directly proportional 1o the
temperature for an ideal gas.

Real gas to Behave Like an ldeal Gas

According o kinetic theory of gases, @ gas has no intermolecular interaction and
molecules are far apart from each other. For a real gas to behave like an weal gas, some
conditions must be satisfied. PE. of the gas molecules iz negligible and thiz have only

K.E.
In Eg. (6.1) n reprasents number of moles which can be given by
Mass of gas . m

~ Molar mass of gas M

[ |

S0, Eq. (6.1) becomes:PV = °RT  or PM = ({7 ) RT

M
ity = S0 = Fﬂ ; E E i
As density; (8] Tl ' i BT or p= T'R iz constant
The density of a gas will be low at low pressure and high temperature due to which

maolecules of the gas will be at large distance from each other and the intermolacular
A ——_—r—
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forces will be negligible, So, Ihe real gas behaves like an ideal gas at low prassure
and high temperature.
Ideal Gas Equation in Terms of Boltzmann Constant
From ideal gas equation:

PY=nRT ..o (I}
Here i reprasents number of moles of the ideal gas. It can be defined as the number of
atoms are molecules perunit Avogadra's number (N, =5.02 x 107,
Mathematically;

=N
n= Ny (ii]

Substituting Eq. (2) in Eq. (1), we have

,
PV = T i)

B Real gases approach
idaal bahaviour under:
The term 1 is termed as Boltzmann constant Ky, {i] how pressure
N, (i) high larparal e

Mathematically;

Substituting the values of & and N, we have
Kp= 138 x 107 J K
Substituting Eq. (6,2) in Eq. (iii),
PV=NEk, T ........ (6.3}
Equation {6.3) gives ideal gas equation in terma of Bolizmann constant.

Example 6.1: One mole of an ideal gas is at a temperature of 300 K. If the
Boltzmann constant Is 1.38 x 10™ J K, calculate the volume of the gas at a pressure
of 1 atom. [1atm = 101325 Pa)

Solution: We know that:
PV =nRT
R =Nxk, whera g_ R
Here V =nxMNxhk.xT/P N,
=1mol 1602 x 10" mol" x 138 x 107 J K" x 300 K / 101325 Pa
vV =003m’
Thus, voluma of gas would be 0.03 m’.




Fhyxics

Gas Laws

Thers are some variables (state functions) that describe quantity of gas which includes
pressure, volume, and lemperature (P, V, and T ) with change in one variable, the
second varable changes while the third is kept constant, The laws that relate these
variables mutually for an ieal gas are termed as gas laws.

Boyle's Law

This law was introduced by Robert Bayle in 1662, and It provides a relationship between
pressuraand volume of a gas at constant temperature. It is sated that for a fixed mass of
anidesl gas, the pressure Fexerted by & gas vanes inversely with volume Vocoupied by
the gas at constant lemperalure.
Mathematically; &P

P

P %"T at constant T

constant 1? or PV = constant
or Y, = PV, Py Wil

Boyle's law is shown graphically in Fig. 6.1. L
Fig. &1

[=]

1

Charles' Law

Chartes'law relates volume and temperature of an ideal gas for a fixed mass at constant
pressure, This law was formulated in 1870 by a French Physicist Jacques Chardes. It is
slatad that the volume of given mass of gas al constant pressure s directly propordional
fothe abzolute temperatune,

Mathematically; %
V o« T atconstanipressure W
ar ¥ = constant
v V.,
or — =
T T. /
Graphically, it can be shown in Fig. 6.2, 2730 T

= o, B2
Gay-lussac's Law =

I is stated that for a fixed mass of an ideal gas, the pressure exered by a gas vares
directly with absolute temperature of the gas at constant volumae,

Mathematically;
P = T atconstantvolume
or P =constant T
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Graphically, Gay-lussac's law is shown in Fig. 6.3,

Thermal Equilibrium s
When two bodies are at the same temperature, the thermal energy (which is related to
the kinelic energy of paricles) of each body is aqual. as a rasull, thare 1s no driving force
for heat transfer betwean them, and thus they remainin thermal equilibriam.

Example

Whenwe puta metal spoon into a hot cup of coffee:

0} initially, the coffee is hotter than the spaan,

fii) overtime, heat flows from the coffee to the spoon.

(i)  evantually, the coffee and spoon reach the same temperature.

Themmal equilibrium is achieved at this point, there is no net heat fliow between the
coffes and the spoon, and they are said to be in thermal equilibrium,

6.2 INTERNALENERGY
The sgm of all forms of @nleml&r en?fg!a‘s (kinetie and
potential) of a substance is termed as its internal energy.

in the study of thermodynamics, usually ideal gas is / Reralion
congsidered as a working substance. The molecules of an “n
ideal gas are mere mass points which exert no forces on '
one another. So, the internal energy of an |deal gas
system is generally the translational K.E. of its molecules.
Since the lemperature of a system is defined as the

average K.E. of itz molecules, thus for an ideal gas
system, the intemal energy is directly proporticnal to its

b =N

temperalure, A RTIG od acae ha bot
According to the kinetic theory of gases, the average T[”’M'ﬁﬁﬁfﬁ
kinetic enargy of gas maleculas is given by nnmuﬂ wiin the ERrng lika bond

< %ml«"l} — ik T

2. :
whera ks Bolizmann constan.

P Diffesent processes can bad o changes in intsmal
Thﬂ!‘ﬂfﬂl‘&. the rise in _lampafal.um of i et i o e g Tcklh ol
an object EF!E'::E an 'HE{EEEE n the acliabalic compression or expansion {no heal sechange),
intarral kinatic energy of s particles. o phase changes (whess heal enargy changes the state
This increase in internal energy can o matterwithoutchanging lemperature).
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ocour due to the absorpbion of heat energy, which Far Yaur Information
ra1sa.3 the average kinatic energy of ﬂ'ﬂ. particles and P R S e
thus increases the lemperature of the object. Corsaquanty, 1t does not depend
on path bul depends on indial and
6.3 WORKAND HEAT final states of the system. Thus,

Iintemal energy s samilar o oa
We know that both heat and work corespond 10 geouiational B.E, So, like the

transfer of energy by some means. The idea was first  potential energy, it is the changa in
apphed to the steam engine whera it was natural to  imermal ensngy and not its absoluts
transfer heat in and get work out. Consequenty, it ¥alug whichis imgortant,

made a sense to define both heat in and work out as ¥
positiva quantities. Hence, work done by the system on

E
its environment is considenad positive while work done I l

on the systemn by the environment is taken as negative.

if an amount of heat O entars the system, it could

manifest itself as sither an increase in intemal ensrgy

or as a resulting quantity of work performed by the

syatem on the surrounding or both. % fy
We can express the work in terms of directly ' T
measurable variables, Consider the gas enclosed in

the cylinder with a mowveable, frictionless piston of

:.-1I (R )]

cross-sectional area A (Fig.6.4-a). In equilibium, the
system occupes volume V¥, and exeris a pressure Fon Fig 54
the walls of the cylinder and its piston. The force F e e

exarled by the gas on the piston is P4, waightless, fricbonaless  piston,

We assume that the gas expands through AV very E;?mlmﬂhﬁlﬁ

slowly, 50 that it remains in equilibrium (Fig, 6.4-b). A pistan is displaced, dowrwand
the piston mowves up through a small distance Ay, the wirk is done o the gas.
work Wdone by the gas is:

W = FAy = PAAy

Since Ady = AV (Changeinvolume) | g SRR
=
Hence W =PAVY (6.4 T
pl  feeee- 1 A
The work dane can also be calculated by area of the curve 0 "'F e UD
under P-V graph as shown in Fig. 6.5. Fig B '

Knowing the details of the change in intermal energy and the mechanical work done, we
ara in a pasition to describa the general principles which deal with haat enargy and its
transformation inte mechanical energy. These principles are known as laws of
thermadynamics,



P — ... (§ Hcatand Thermadynamics B
6.4 FIRSTLAWOF THERMODYNAMICS For Your Information

When heat is added to @ system there is an increase in the _‘_@ 8
internal energy due to the rise in temperature, an iNCrease positve

in pressure or change in the state, If at the same time, a el
substance is allawed to do work on its envirenment by -0
expansion, the heat O reqguired will be the heal necassary nagaire
fo change the internal energy of the substance from L, in

the first state to U, In the second state plus the wark W _..—- W
cloarve an the emvironmenl.

Thus = (U= L)+ W Wik
o (S f——
or Q= AU+ W 16.5) presitive

Thus the change in internal anargy AL = U, - U is defined as Q) — W Since it s the same
for all processes conceming the state, the first law of thermodynamics, thus can be
stated a5,

In any thermodynamic process, when heat Q is added to a system,
this energy appears as an increase in the internal energy AU stored in
the system plus the work Wdone by the system on its surroundings.

1. Conservation Principle: The underlying principle of the fisl law  of
thermodynamics is the conservation of energy, It asserts that while energy can
change from one form to another (such a5 from chemical potential energy to
thermal energy), the total amount of energy in an isolated system remains constant
over time.

2. Wider Applicability: Bevond mechanical systems, the first law of thermodynamics
applies universally to all forms of enaergy and all lypes of processes, including
chemical reactionz, elecirical systems, and nuclear reactions, It provides a
foundational undersianding that allows scientists and engineers fo predict and
undarstand energy transformations in various corexts.

The first law of thermodynamics expresses the law of conservation of energy by
affirming thal energy s a consarved guantity in isolated systams, [t provides a
framework to understand how energy is transferred and transformed within sy stems
without violating the fundamental principle that energy cannot be created nor destroyed.
This akgnment underscores the broader apphcability and importance of the first law in
understanding the behavior of energy in the UNIVerse.  Tromoceuple  Trapped

Pislon
Abicycle pump is a good exampla. Whan we pump an — pushed in
thie handle rapidly, it becomes hot due to mechanical
work done on the gas, raising thereby its intarnal '.'
energy. One such simple arrangement is shown in Milvclimeter
Fig. 6.6. i consists of a bicycle pump with a blocked Fig, 6.8
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outlet. A thermocouple connected through the blocked ouflet allows the air temperature
to ba monitored. When plston is rapldly pushed, thermometar shows a temperatura rise
due toincrease of intermal energy of the air. The push force does work on the air, thereby,
incraasing its intemal energy, which is shown, by the increase in temparature of tha air,

Human metabolism alko provides an example of energy conzensation. Human beings
and other animals do work when they walk, run, or move. Work requires energy. Energy
Is also needed for growth to make new celis and o replace obd cells that have died.
Energy transforming processes that occur within an organism are named as
metabolism. Wa can apply the first law of thermadynamics (A LU= 00— W), Io an arganism
of the human body. Work done will resull in the decrease in iniernal energy of the body.
Consequently, the body temperature or in other wards intemal energy s maintained by
the food we eat.

Example 6.2: Agasis endosad in a containar fitted with a piston of cross-sectional
area 0.10 m’. The pressure of the gas is maintained at 8000 N m*. When heat is showly
transferred, the piston s pushed up through a distance of 4.0 cm, If 42 J heat is
transfarred to tha system during the expansion, what is the change in internal energy of
the system?
Solution: Theworkdonebythe gasis
W=PAV=PAAy=8000 Nm™ x 0.10 m' x4.0x10%m
=32Nm=32.
The change in internal energy is found from first law of thermodynamics
AU=0-W=4Z J-321=10J

Isothermal Process

It is a process which is carmed out at constant temperature and hence the condition for
the: application of Bovie's law on the gas is fulfiled. Therefore, when gas expands or
compresses isothermally, the product of its pressure and volume during the process
ramains constant. If P, ¥, are initial pressure and volume whereas F, | V, are pressure

LNl

and volume after the isothermal change takes place (Fig. 6.7-a), respectively. then
F1v1= F:.:"ll'llr.-' ) peai IH"IIJ

In case of an ieal gas, the FE associated with its
molecules is zero, hence, the intermal energy of an ideal T
gas depends only on ils temperature, which in this case F
remains constant, therefore, AL/ = 0. Hence, the first law of 8. %, T
thermadynamics reduces o 1 |
Q=W Fig. 6.7(a) ¥ V—>3 v,
Thus if gas expands and does external work W, an amount of haat ( has fo be supphed
o the gas in order to produce an isothermal change. Since transfer of heat from one

Canalar
Tamperahss
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place to another requiras tima, hence, o keep the lemperatura of the gas constant, the
expansion or compression must take place slowly. The curve representing an
isothermal process is called an isotherm (Fig. 6.7-a8).

Adiabatic Process Brain Teaser!

Why does fhe misrmal

An adiabafic process is the one in which no heat enters or enargy of an ideal gas
leaves tha system. Therafore, AQ) = 0 and the first law of remain conslant during
thermodynamics gives ==ALS isathermal expansion?

Thus, if the gas expands and does exlemal work, itis done at the expense of the intemal
energy of its molecules and, hence, the temperature of the gas falls. Conversely. an
adiabatic compression causes the temperature of the gas to rise becausa of the work
done on the gas.

Adiabatic change occurs when the gas expands or is compressed rapidly, particukary
when the gas is contained in an insulaled cylinder. The examples of adiabatic processes
are:

{1] The rapid escape of air from a burst tyre,

ril The rapid expansion and compression of air
through which a sound wave is passing.

Liey Cloud formation in the atmosphere.

As the temperature of the gas does not remain constant,
50 it has baan saan that,

V' = Constani Fig, 6.7()
whera 7 i5 tha ratio of the molar specific heat of the gas at constant pressure to molar

specific heat at constant volume. The curve representing an adiabalic process is called
an adiabat (Fig.6.7-b).

6.5 REVERSIBLEANDIRREVERSIBLE PROCESSES

A reversible process is one which can be retraced in exaclly reverse order, without
producing any change In the sumoundings. In the reverse process, the working
substance passes through the same stages as in the direct process but thermal and
mechanical effects at aach stage are exacty reversed. If haat is absorbad in the direct
process, it will be given out in the reverse process and if work is done by the substance in
the direct process, work will be done on the substanca in the reverse process. Hence,
thewarking substance Is restored to its onginad conditions.

A succession of events which brings the system back
to its initial condition is called a cycle. A reversible

cycle is the one in which all the changes are reversible.

Although no actual changa is complately reversible bul the processes of ligquihication and
evaporation of a8 substance, performed slowly, are practically reversible. Simikarfy the




M
show compression of a gas in a cylinder is reversible m
pracess as the comprassion can be changed fo axpansion
by slowly decreasing the pressume on the piston o reverse po
the operation.
If a process cannot be retraced in the backward '
direction by reversing the contrelling factors, it
is an irreversible process.
Al changes which occur suddenly or which involve friction
or dissipation of energy through conduction, convection or Tha. staam “i“ﬂ*“ﬂ'l = a
radiation are ireversible. An example of highly irreversible B :
pracess is an explosion,
6.6 HEATENGINE
A heat engine converts some tharmal energy to machanical work. Usually, the heat
cames from the burning of a fual, The earliest heal engine was the steam engine, It was
devebped on the fact that when water is boded in a vessel covered with a fid, the steam
inside tries to push tha lid off showing the abiity to do work. This obsarvation helped to
devalop a steam englne.
The working principle of a heat engine is based on the conversion of heat energy into
mechanical work through a cydic process. Here (s how a heat engine Lypically operates.
The working principle of a heat engine involves the cyclic transfer of heat energy from a
high temperature reservorr o a low temperature reservoir, with the objective of
converting as much heat as possible into mechanical
work, This process is governed by thermodynamic
principles and 5 essantial in vanous applications where
mechanical energy is required from heat sources.
6.7 SECONDLAWOF THERMODYNAMICS
First law of thermodynamics tefls us that heat energy can
ba convarled into equivalent amount of work, but It is
silent abowt the conditions under which this conversion
takes place. The second law Is concemad with the
circumstances in which heat can be converted into work
and direction of flow of haat.
Before initiating the discussion on formal staterment of the
second law of thermodynamics, let us analyze brieflythe o, ¢
factual operation of an engine. The angine or the system g o0 | imiion of &
(Fig. 6.8} absorbs a quanfity of heat O, from the heal heafengine. The engine abeots
source at temperature T, It does work W and expels heal mmtﬁ:,ﬁu psie ki
O 1o low temperalure reservoir al temperature T, As the 800083 work W
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working substance goes through a cyclic process, in which the substance eventually
returns to its initial state, the change in intemal energy is zero, Hance, fram the first law
of thermodynamics, nat work done should be equal fo the net heat absorbed. |,

W=0Q,-0Q,
In practice, the petrol engine of a motor car extracts heat from the burning fuel and
converts a fraction of this enargy to mechanical energy or work and expels the rest to the

atmosphere. It has been abserved that petral engines convert reughly 25% and diesal
engines 35 to 40% available heat energy into work.,

The second law of thermodynamics is a fermal statement based on these observations,
it can be stated ina number of different ways:

According to Lord Kelvin's statemen! based on the working of a heat engine;

It iz impossible 1o devise a process which Tidbils
may convert heat, extracted from a single
rasarvoir, entirely into work without leaving

any change in the working system.

This means thal a single heal reservoir, no matter how
miuch energy it contains, cannot be made o perform any
work, This is true for oceans and our atmosphere which
contain a large amount of heal energy but cannot be
converied inio useful mechanical work. As a consequence
of second law of thermadynamics, two bodies at differant
temperatures are essential for the conversion of heat into
work. Hence, for the working of heat engine thers must be  According o the. Kelvin statemant
a source of heat al a high lemperalure and a sink at jow 2! the sacand law of

1 Tharmadynamses, b pocass
temperaiure to which heat may be expelled. The reason  piciuted here = impassible. Heat
1 - ¥ Iram & soufce at a =inghe
for aur inability to ullize the heat contents of oceans and  ismperaturs cannct te corvanad
atmosphere is that there is no reservoir at a temperature  eneroly into wark

lower than any one of the two,

6.8 CARNOTENGINEANDCARNOT'S THEOREM

Sadi Carnot in 1824 described an ideal angine using anly
izothermal and adiabatic processes. He showed that a
heat engine opearating in an ideal reversible cycle
betwesn two heal reservoirs at different temperatures,
would be the most efficient engine. A Garnot cycle using
an ideal gas as the working substance is shown on PV
diagram {Fig. .9). it conszists of following four 2teps:

1. Tha gas is allowed lo expand isothermally at
lemperature T, absorbing heal O, from the hot

h—>
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reservoir. The process is represented by the curve AB.

2. The gas is then allowed lo expand adiabatically until its temperature drops to T, The
process is represented by the curve BG.

3. The gas &t this slage is compressed isothermally al temperature T, rejecting heat @,
o the cold reservoir. The process is represented by the curve CD.

4. Finally the gas is compressed adiabatically to restore its initial state at temperature
T,. The procass s reprasentad by the curve D,

Tharmal and mechanical equilibrium is maintained &ll the time so that each procass is

perfactly reversible. As the working substance raturns to the initial state, thera is no

change in itsinternalenergy i.e., AU=0.

The rel work done during one cycle equals to the area enclosed by the path ABCDA of
the PV diagram. It can alzo be estimated from net heat AQ absorbed in ona cycle.

Q=0Q,-Q,
From 1 law of thermodynamics: Interesting Infarmation
Q=AU+W
or W=0-0Q { al=0)
The efficiency y of the heat engine is defined as:
_  Dutput (Work)
Imput { Enargy)
Thus = -giﬁ-?-& .......... (6.6)

The energy transfer in an isothermal expansion or
comprassion tums out 1o be proporfional to kalvin
termperature, So @, and Q. are proporiional © kekvin
temperatures 7, and T, respectively and hence,

natinhe 5 T

T F e (B7)

The efficiency is usually taken in percentage, in thal case;
Fercantane efficiency = E— %J « 100
1

Thus, the efficiency of Carnot engine depends on the temperature. of hot and cold
reservoirs, Il is independent of the nalure of working substance. The larger the
temperature difierence of bwo reservoirs, the greater is the efficiency. But it can never ba
one or 100% unless cold reservoir is at absoluie zero temperature (T, =0 K).

Such resarvoirs are not available and hence the maximum effickency is always less than
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ong. Mevertheless, the Camof cycle establishes an upper limit on the efficiency of sl
heat engines, No practical heat engine can ba perfectly reversible and also energy
dissipation is iInevitable. This fact is stated in Camol's theorem:

No heat engine can be more efficient than a Carnot
engine operating between the same two temperatures.

The Carnot’s theocram can he extendead o siate that:

All Carnot's engines operating between the same two temperatures have
the same efficiency, irrespective of the nature of working substance.
In most practical cases, the cold reservoir is near room temperature. So, the efficiency
can only be increasad by raising the lempearature of hot resarvair. All real heat engines
are less efficient than Camot engine due to friction and other heat losses.

Example 6.3: The turbine in a steam power plant takes steam from a boller al 427 °C
and exhausts into 8 low tlemperature reservoir at 77 “C. What is the maximum possible
efficiency?
Solution: Maximum efficiency for any engine operating between temperatures
Tand T,is

n= T2 100 whers Ti= 427 +273=700K
1
and To= 77+ 273 =350 K
T,-T, _ 700K-350K 350K 1
5 ! d = = = — = = -
o T BR =3 05 or n=05=100=50%

6.9 REFRIGERATOR m

Refrigerator i3 a device which maintains the
temperature of a body below that of its surrounding. it o
operates in a cyclic process but in reverse as that of the
heat engine as shown in Fig.6.10. Arefrigerator absorbs

Lo e Ll
heat from a cold resarvolr and gives it off to a hot e
rezenvgir. This shows that in a refrigerator, the work is gl froadit
done an the system while in a heat engine work is done i"JC'T
by thie systam., Hoatin

A refrigerator works on the basis of Clausius statement
of second law of thermedynamics, Le., a heal engline s
operating in reverse. Heat Q. is drawn from Low

Fig. B 10
Temperature Resarvoir (LTR} by compressor and (s A,gr-.ﬁ-lgmlmhwuf-;ml'nﬂn

i i b-tarmparaiure comparimeant 1o
thrown into High Temperature Reservoir (HTR) with the i |

help of extermal work dene. The heat rejected to HTR m-h-_lpnrm_m.hh
(€, )is given by s il it st
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Q.+ W=0Q, or W=0g, -4,

The main purpose of refrigarator is to exiract as much heal G, as possible fram LTR with

the expenditure of as lttle work Was pozssible.

Co-efficient of Performance of Refrigerator

The ratio of heat removed from LTR (3,) 1o the work done (W) is called co-efficient of

performance of a refrgerator.

A better refrigerator will remove a greater amount of heal from inside the refrigerator for
the expenditure of a smaller mechanical work or electrical energy. The co-efficient of
performance of a refrigerator can ba given by

L
W Q.-Q
Co-efficient of performance in terms of temperature, where G« T is
2
E=—1
[

Example 6.4:

Arefrigerator has a co-efficient of performance 8. If temperature in the freezer is -23 *C,
then what is the temperature at which it rejects the heat?

Sodution:
Co-afficient of perfformance E=8
Temperature of cold reservelr (freezer) T, =-23C=-23+273=250K
Temperature of hot reservoir (room) E=T,=7
Co-efficient of performance = T:II_T
Substituting the values P
T,— 250
or B(T,—250)= 250 or T.—250 = i‘?l
ar T = 2M26+250 = 2R126K = 825°C

6.11 ENTROPY

The concept of enfropy was introduced into the study of thermodynamics by Rudolph
Clausius in 1856 1o give a quantitative basis for the second law. It provides another
variable to describe the state of a system to go along with pressure, volume,
temperature and internal energy. If a system undergoes a reversible process during
which it absorbs a quantity of heat AQ at absolute temperatura T, then the increasa in tha
state variable called entropy S of the system is given by
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AF=EE i (6.8)

Like potential energy or internal energy, itis the change in entropy of the systemwhich is
important,

The change in entropy is positive when heal is added and negative when heal is
removed from the system. Suppose an amount of heat Q flows from a reservoir at
temperature T, through a conducting rod to a resemvoir al temperature T, whan T,>T..
The change in enfropy of the reservair, &t temperature T, which loses heat, decreases
by QT and of the resarvair al tempearature T,, which gains heal, increases by Q/T.. As
T,=T, .50 QIT, will be greater than /T, ,ie. QT =0QIT,.

. AN
L

It follows that in al natural processes where heat flows from one system o another,
thera ks always a nel increase in entropy, This ks another stalement of 2% law of
thermaodynamics, According to this law:

if a system undergoes a natural process, it will go In the direction that
causes the entropy of the system plus the environment to Increase.

Itis observed that a natural process lends to proceed lowards a state of greater disorder,
Thus, there is a relaticn between entropy and mobkecular disorder. For example, an
irreversibke heat flow from a hot to a cold substance of a system increases disorder
because the malaculas ané initially sorted aut in hatter and cooler regions. This order |5
lost when the system comes o thermal equilibrium. Addition of heat to a system
increases its disorder because of increase in average molecular speeds and therafore,
the randomness of molecular motion. Simidary, free expansion of gas increases lis
disorder because the molecules have greater randomness of position after expansion
than befors. Thus, in both examples, entropy is said to be increased,

We can conclude thal only those processes are probable for which entropy of the
system increasas or remains constant, The process for which enfropy remains constant
iz a revarsible process; wheraas for all imeversible processes, entropy of the system
increasss.

Henoa, net change in entropy ( %j iz positiva.
1

Evary time entropy increases, the opparunity to convart some haat into wark |2 lost. For
example, there is an increase in entropy when hot and cold waters are mixed. Finally,
the warm water cannaf be separated into a hat layer and a cald layer. There has beenno
loss of emargy but some of the energy is no konger available for conversion into work.
Therefore, increase in entropy means degradation of energy from a higher lavel where
miara work can ba extractad o a lower level at which lass or nouseful work can be done,
The energy in a sense is degraded, going from more orderly form (o less ordery form,
evantually ending up as thermal anergy.

In all real processes whene heat transfer oocurs, the energy available for doing useful
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work decreases, In other words, the entropy increases., Even if the femperature of some
system decreases, thereby decreasing the entropy, itis at the expense of net increase in
entropy for some obther system. YWhen all the systems are taken together as the
universe, the entropy of the universe always increases,

Example 8.5: Calculate the entropy change when 1.0 kg ice at 0 °C melts into water
at0"C. Latent heat of fusion ofice L, =3.36 x 10" J kg ™.

Solution: m = 1kg

T =0%=2T3K
Ly = 336 %10% Jkg'
As 45 = B8 Brain Teaser!
¥ Why does a deck of cards
whare AQ = mi; becoma mora disordened
when shuffled?
So AS = %
Subslituting the values
i 1.00kg x3.38 x10" J kg'
273K

AS = 123x10°JK'

Thus, entropy increases as it changes to water. The increase in entropy in this case is
a measure of increasea in the disorder of water molecules that change from solid to
bquid state,

|! Mulitiple Choice Questions ﬂ
Tick (+') the correct option,

8.1 In an isothermal change, Intemal energy!
{a)decreazes (b)increases (c)ramaing the same [d)bacomes zero
6.2 First law of thermodynamics 15 based upon law of conservation of
{almass (b} energy {c) mementum {dcharge
6.3 Adevice which convarts mechanical anerdgy into heat anergy is called:
{ajheatengine (b} Camotengine (c)refrigerator id)turbing
6.4 Yhen two E‘lbiﬂ'lﬁ-lﬁ ara made in thermal contast having sama amperaluees, than
thay are at;
(&) thermal Equilibrium (b) chemical Equilibrium
{c) mechanical Equilibrium (d) physical Equilibrium
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6.5

6.6

6.7

6.4

.9

6.10

6.1
g.2

6.3
6.4
6.5
E.6
6.7

6.8

6.9

£.10

B.11
6.12

Whan the system is expanded by adding heat energy, thenthe work done will be:

{a) positive and on the system (b} negative and on the system
() positive and by the system (d)negalive and by the system
Entropy of asystem in revarsiile procass:

(a)decreases (b)increases (c)isinfinite (dlis zero
What happens {o intemal energy of an chject when ils temperature:
[ajdecraases [(b)remains Constant {c)increases {d) fluctuates
The value of Bollzmann constant is:

(@) 1.38x 107 J K" (b)1.38x 10" JK™

{c)1.38x 10" JK" (dy1.38x 107 J'K"

Inan adlabalic procass, thera s no;

{a} change in temperature (b} exchange of heat

{c)changein internal enangy (d)work done

Thermodynamics mastly deaks with;
{a) measurement of quantity of haat
(b} transfer of quantity of heat
(c]change of state

{d}) Conversion of heat to other forms of enemgy

|] " Short Answer Questions E

What is meant by thermal equilibrium? Explain briafly,

What iz meant by internal energy? How is it related to temperature of an ideal
gas?

Siate 2nd law of thermodynamics in two different form.,

Is H possibla o construct a heal engine of 100% efficiency? Explain.
Differentiate between reversible and ireversible processes.

Why adiabate |5 steaper than isotherm? Explain.

A refrigerator transforms heat from cold to hot body. Does this viclate the second
law of thermodyniamics? Justify your answer.

Explain briefly heat death of universa in terms of entropy,

Is it possible for a cyclic reversible heat engine o absorb heat at constant
temperature and transforms i completely into work without rejecting some heat
at low tempearature? Explain.

How does behaviour of real gases differ from ideal gas at high pressure and low
temperature? Identify the reasons behind these differences based on kinetic
theory of gases.

Show that area under P-V graph is equal lo work done,

How isworkdone (i) by agas (i) onagas? Calculate.
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6.1
6.2

6.3

B4

BB

g1

6.2
6.3

.4

GRS

6.5

6.1

8.2

6.3

6.4

| Constructed Response Questions

Explain how thermodynamics relates fo the concept of energy conservation.
Explain how thermodynamics applies to biokogical systems, such as human
body,

A gas I8 expanding adiabatically. Expiain what happans to lemparature and
pressure of the the gas.

A coffes cup is laft on a tabla, and overtime coffes cup cools down. Explain
thermoedynamics processes ocourming during this process.

How we can explain differant weathar patterns through thermadymical
processes like wind, rain, etc.

|‘ Com prehensive Q uErti_nn 5 . |

What are the postulates of kinetic theory of gases? Derive a relation for ideal gas
equation in the form FY=NkT from general gas equation.

State and explain various gas laws,

Explain first law of thermadynamics in detall, Give an example in support of yvour
explanation. Give its two applications.

What is a refrigerator? Explain its working. Derive an exprassion for its
co=gfficient of performance.

What is Carnot engine? Describe Carnot oyde. State Carmot theorem and derive
an exprassion for efficiency of Carnol engine.

Define and explain the term "Entropy”.
@ Numerical Problems |

A 2.5 g sample of an unknown gas s placed ina 25.0 L container at 300 K. The
pressureg of the gas is maasured to be 8.21 atm. Calculate molar mass of
unknciwn gas. {Ans; 37.6gmal’)
Agas occupies 6,0 L of volume at a pressure of 12 atm, What will be the valume
of gas if the pressure is increased by 2.0 atm, azsuming that temperature
ramains constant.

AnsAe L)
A gas undergoes a thermodynamic process where il absorbs 500 J of heat
anargy and performs 300 J work on 13 surroundings. Calculate the change in
internal enargy of the gas. (Ans: 200.J)
ACarnot engine is operating between a high temperature reservair at 600 K and
alow lemperature resanvoir at 300 K. Calculate:
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6.5

6.6

o7

8.8

(i) the maximum possible efficiency
(i} the amount of work output if tha angine absorhs 500 J of heat from the
high temperature resan/air, LAne: 5050, L50J)

A refrigerator extracts 1200 J of heat from its imterior (the cold reservoir and
releases 1800 J of heat to the surrounding environment) (the hot reservoir)
during each cycle. Calculate:

(i) the work input required per cyde.

(i} the co-efficient of performance (COP) of the refrigerator. (Ans: 600, 2)
Calculate the entropy change when 1.0 mole of ice at 0°C melts o form liquid
water atthe same temperature. {Ans:22.0JK")
A gas occupies 400 mL at 20 °C. What volume will it occupy at 80 °C, assuming
constant pressure? {Ans 482 mL)

A gas has a pressure of 2 atm at 300 K, What pressure will it have af 450 K,
assuming constant velume? (Ans: 3atm)



. Afer studying this chapter, the students will be able to:

® Lseihe principle of superposition of waves Io solve probisms.
& Differantiate betwaan corstructive and destructive intardennce,
& Apply the principle of superposiion 1o explan the woeking of nolse Ganceing headphonas,

® lllustrate expenments thet damonetraie elalionany waves [usng microwawes, slretched strings and
air colurmns (i will ba assumed thal erd corrections are negligible; knowledge of the concepd of and
ooreclions & nol reguinad |]

&  Explain the formation of & siationany wava using graphical reprasentation.
& Expiain ihe lrmation of iarmonics in stalionany wies.

& Deseribe an expedment that demonstratas diffractlon finclisding the qualitative affect of the gap wicdth
ralatees to the wavalangih of the wave; for axample diffraction of wabkes wavesin a nppla lank]

& Explain beals [as the pulsation causad by beo waves of slighily diffesent Insguencies interlering wih
sach other].

& |l|lsirate pramplas of how beats are generated in misical instruments,

® Uue inlensitys power/anss b sobve problams. Lse inlensity o (amplitude)’ lar & progresaave wave io
soive probieme.

» Expilain fhat when a ST of sound wases moves fefative o a slaionary sbservar, thr obsarved
frequency is: difierent from the source fequency [describing the Doppler effect or a slalionary
sounce and a moving abeanser ks nok requirad],

* Usa the anpression f = ;‘I*% for the observed fraguency when 3 Source of Saund wAVes mevis
relative loa stationary sbaerver,

® ECaplain the applications of the Doppler affect [such as radar, sonas, astronomy. satallite, radar spaad
traps and studying cardiac probiems in humans],

ma are well familiar with varous types of waves such as water waves in the ocean
and circular ripples formed on a still pool of water by rain drops. When a musician
plucks a guitar string, sound waves are generated in air which reach our ear and
produces sensation of music, The vast energy of the Sun, millions kilomeires away, Is
fransferred to the Earh by light wawves, In this chapter, we will discuss, formation,
propagation and applications of different types of waves.

7.1 WAVES

Awave is a regular disturbance or variation thal carrias energy, which spreads oul from
the source. For example, energy ia ransfered from the Sun to the Earth in the form of
light waves called eleciromagnatic waves, can even travel through vacuum, However,
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in a madium, anergy is tansferrad due to the
regular and repeated disturbances that fravel
through the medium, making its paricles fo move
up and down or back and forth (lo and fro). Imagine
a stone thrown into a pond of water (Fig. 7.1

« The stone producas a disturbance (fpple) that
fravels through the water {medium). disharbance (rippke|

= The water parficles move up and down at their own places, creating a repeating
pattern known as wave that spreads out ¥

The displacemeant of & particle of a
wave i5 its distance in a spacified
direction from its rest / equilibrium
position. Il the displacement is

B N

[ :
[l

plotted akong the y-axis and the time u“’.f_':r_ Hietontey

in the direction of energy travel along kil

the w-axis, we gel a wavefarm as v

shownin Fig 7.2, Fig. 7.2:  Graphical description of a wave

The waves can be descnbed by the following parameters:

displacement of the wave (or

particles of the mediom) from ils o Elengi
equilibrium position,

3. Frequancy (f): The numbar of
oscillabonsivibrations or cycles per
secand, |

3. Wavelength (%.;; The distance Ampltude
between two consecufive similar T e
peoints on the wave that ara in phase. Wiy AlSpA af Wil wive in 30

4, Period [T): The lime taken by the wave to comphele one oscillation or cycle. it is the
raciprocal of tha frequency T=1/1,

5. Speed (v): The speed at which the wave travels. If a wave crest moves one
wavelength } in one penod of oscillation Tihespeedvisgivenby  v= L/T

as /T=F wehave L (7.1}
6. Phase (0): The relative position of a point on the wave st a given time.
Types of Waves

Waves have various forms, each with unigue characieristics, A brief detail of different
types of waves is glven below!
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1. Mechanical Waves

These waves require 8 physical medium [solid, liquid, or gas) o propagate, Examples
are walar waves (ocean, lake, or pond ripples), sound waves (audible vibrations in air,
water, or solids), seizsmic waves (earthquakes), etc.

2.  Electromagnetic Waves

They do not require a medium to propagate and therefore, can travel through vacuum.
Examples are radiowaves (wireless communication), Microwaves (cooking and
haating), Infrared waves (IR or heal radiation), Visible light {(sunhght, lamg hight),
Ultraviolet waves (UV radiation), X-rays imedical imaging). Gamma rays {high-enengy
radiation), etc.

5. Quantum Waves

Cluantum waves are associated with parfidles like electrons  These wave iypes are
and pholons. Examples are matter waves/particle waves ﬁf’i‘-:':.""]'f' rﬂ:::ﬂi':r’;ﬁ
{electron waves in atoms| or de-Broglie waves, photon waves  ppocice ;gimhm and

{light quanta), ete. evaryday Ife.
4, surface Waves

Surface waves propagate along surfaces or interfaces between two mediums,
Examples are ocean surface waves (wind-driven waves), seismic surface waves, eic.

Transverse and Longitudinal Waves  Trensverse wavas

There are two main types of waves which are
named as transverse waves and longitudinal
waves. A fransvarse wave 15 one in which the

vibrations of the parlicles are at right angle to the
direction in which the energy of the wave is
fravalling, Whereas a longiludinal wave is one in
which the direction of the vibration of the particles
is along or parallel 1o the the direction in which the
energy of the wave iz travelling.

The transverse wave and longitudinal wave are
llustrated in Figs. 7.3 (a and b), raspactively, Fig. 7.3: Mam lypes of waves

7.2 PRINCIPLE OF SUPERPOSITION OF WAVES

If a particle of the medium is simultaneously acted upon by two waves, then the resultant
displacement of the particle is the algebraic sum of their individual displacements,. This
is called principle of superposition.

In other words, the displacements of the individual waves are added together to form a
new wave pattern as shown in Fig. 7.4 (a and b), respectively.

{it f two waves, which overlap each other, have same phase, their resultant
displacemeant will be:

=1
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yEy. 1y, L ¥, Wave
where y, = amplitude of wave 1 R I

y, = amplitude of wave 2 ;’f N a2
and v =rasultant amplitude ,_f”

Particularly, if y, = v, then resultant displacemeant Mm 4and 2 sipnmosed

will be: . "x;-—-—_;;:’"
y=2y,0ry=2y, m B

(i} If wo waves, which cross each other, have  goosant wee
opposite phase, their resullant displacement FER Y,

will be: 7Alak Suparposition of fu wevas
y=y, H=y) Eﬁrﬂmﬁrmuy which ane
y=h-F

Particulady, ify, = v, then resultant dizplacement will be vy = 0.

Thus, if a particle of 8 medium is simulianecusly acted upon //_\\
by i waves such that its displacement due to each of the i

individual n waves be Y. Y ... v, then the resultant W

displacement y of the particle, under the simultaneous action

of these n waves (g the algebraic sum of all the

displacements, i.e., A_:w}x
FEE YA i "\.,\ ¥ f.r"'r

This is called principle of superposition of waves. N

Mathematically, this can also be represented as: /_\\ /"’ _H‘x
W=y xt) *pfel) % vy fat) : 4

whera y(xt) is the resultant wave, whereas y (x1), x"x\ -//\_/

[TATR) I y.{x.t) are the individual waves. e

In the context of waves, yx i} represents the wave_fu nction T T
ar ws!-.ra digplacement al a given _puim ¥ and tlmq [ | R TR
describes the shape of the wave and its evolution overtime.  waves of the same fragisncy
The principle of superposition apphies to linear waves or small heham axaclly ol of phasa.
Principke of superposition of waves leads to many interesting phenomena:

[} Twowaves having same lrequency and travelling in the
same direction (Interference).

(il Two waves of slightly different frequencies and
travelling in the same direction {Beats).

{Ifi) Two waves of equal frequency travelling in opposite
direction | Stationary waves),

Applications of the Principle of Superposition iﬂhm patiern  Formed
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By applying the principle of superposition of waves, noise-cancelling headphones

effectively eliminate unwanted ncise, providing a more Immersive and peaceful

listening experience.,

1. The headphonas contain one or more micraphaneas that capture ambient noise {like
background chatter or engine rumble or any environmental noise ),

2. The microphone sends the sound signals to an amplifier and a processing unit in the

headphomnes.

The processing unit generates an "anti-noisa” signal, which is the exact opposite of

the ambiant noisa (in tlerms of amplitude and phase).

4. The anti-noise signal is then played through the headphones, along with the desired
audia (ke musicor voice),

5. When the anti-noize signal meets the ambient noise, the two waves cancel each
other out resulting in a much quister listening expenence.

Though the above example iz an oversimpification of the situation, as noise-canceling

headphones use complex algorithms and mulliple microphones to achieve optimal

noise cancellation, tha basic principle of superposition ramains a fundameantal concept

inunderstanding how they work.

7.3 INTERFERENCEANDITSTYPES

Superposition of wo waves having the same frequency and travelling in the same
direction results in phenomenon called interference.

=

==
Proasr Ampllier

=]

. -
.-m-,;F R

Fig. T.5{a) An expetimantal sehip fo
hebrie|nteriminge of sourd weves. Fig, 7.5 () Irerlerance of sound waves

An experimental set up to ocbserve interference effect of sound waves Is shown in
Fig. 7.5(a). Two loud speakers 5, and 5, act as two sources of harmonic sound waves of
a fixed frequency produced by an Audio Generalor (AG). Since the two speakers ara
driven from the same generator, therefore, they vibrate in phase. Such sources of
waves are called coharent sourcas. A microphone attached to a sensitive Cathode Ray
Decilloscope (CRO) acts az a detector of sound waves. The CRO s a device to display

the input signal into waveform on #s screen. The microphone is placed at various poinis,
e —————— S R i e—
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turn by turn, in frontof the loud speakers as shown in Fig, 7.5(b).

Constructive Interference

Al paints P, P, and P, we find that a comprassion meels a comprassion and a
rarefaction meeis a rarefaction. 3o, the displacement of two waves are added up at
these points according to the principle of superposition and a large resultant

displacement is seen on the CRO screen (Fig. 7.5-c).

Fig. 7.5{ck Fig. 7.5{d):
Constrisctive irerferenca: Desinectivo Imerferonca: IH!:EI'!EI'MEH pattem produced by a
Larnge displacentent is displaved an Zem deplacerent 8 dkplayed on thin scap fim lureated by whts
thee CRO sormen the ©RCH sersen Egri.

From Fig. 7.5 (b), we find that the path difference AS between the waves at the point P,

e AL = S'E'FII Py
ﬂ5=4%h— 3; L=

Similarly, at poinis P, and P, path difference is zero andk, respectively. Here, A is the
wavalength which is the distance batween any two succassive solid or dashad lines.

Whenewver the path difference is an integral multiple of wavelength, the
two waves are added up, This effect is called constructive interference,
Therafore, the condition for constructive interference can bewritten as
AS =nA where n=0, 2114, 23, .........
Destructive interference

At points P, and P, a compression meets a raretaction, so that they cancel each other's
effect acconding to the principbe of suparposition, The resultant displacemeant becomes
zero, as shownin Fig, 7.5{(d}.
The path diffarence AS babween the waves atpoinis P.and P, is
_-‘I.S = -Si Pi .-.S1PE
1

1
AS=dr-314= 12
TR )
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Similarly, at P, the path differenca is ; X,

So, at points where the displacements of two waves cancel each
other's effect, the path difference is an odd integral multiple of
half the wavelength. This effectis called destructive interference.

Therefore, the condition for destructive interference can be written as;
AS = [2n+ 1) 02 wherean=0 +1,42, +3, ....._....

Example 7.1: Two speakers are arranged as
shown in the figure. The distance batweaen them is
4.0 m and they emit 8 constant tone of 344 Hz. A
microphone P is moved along a kne parallel to and
4.0 m from the line connecting the two speakers. It
is found that tone of maximum loudness is heard

.
hI
= \
an the centre of the ling and directly opposite o e

and displayad on the CRD when microphone is
each speaker, Calculate the speed of sound,

5

Solution: 1

Distance betwean spaakars § 5, =30m = ,
Tone frequency f =344 Hz | y
Distance between speakers and lineof motionof PSP =4.0m “““——"
Speed of sound V=7

For tone of maximum loudness or the condition for constructive interference, the path
diffarence mustbe 0, 14, 24, $34 .

At middle point '0° the path difference between two sound waves is zerg (5.0 = 3.0),
thus at that paint ‘0’ eonstructive interferanca takes place.

For the next point P of constructive interference, the path difference between waves
should be A. 50, A=pathdifference=5FP -3 P,
MNow, we calculate values of 5, P fromi right angle triangle 5.5,F,

SR =557 +(SFY (By PythagorasThecrem)

5.P = J3F +(4)" =J B8 =/35=5m

Therafore, L=5P -8P, or A=8—-4=1m
Thig is the path differance for constructive interferance.
As w=Ffi

Putting the values, we havea p=344 81 =344 ms"
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Example: 7.2: The wavelength of a signal from a radio For Your Information
transmitter is 1500 m and the frequency is 200 kHz. What
is the wavelength for a transmilter operating at 1000 kHz
and with what speed the radio waves fravel?

Solution:
%, =1500m= 1.5x10°m, =200 KHz = 2.0 «10* Hz
f,=1000 KHz =1 x10°Hz, A, =7, v=2.As v = f&
Sinca, the speed of both the signals is same., 5o

Vo= T,

v = 2.0=10° x 1500

v = 3.0 =10"mg’

Also v o= L,
S
27 . -
i Monioe hromatie Lght
- n = Sodivm chiwide in o Rame ghoes
. 310 mg outpura yellow Bght, This light Snct
7 1H1|:||:|Hz :um:dlLu'n-:F'dedgmur-.
iz = 3=10°m

7.4 STATIONARY WAVES & THEIR FORMATION

Stationary waves, also known as standing waves, are the waves that oscillate in a fixed
pasition, without moving or propagating. They are formed by the superposition of two
wavas with the zame fraquency and amplitude, travelling in opposile directions, The
resulting wave pattem remains stationary, with nodes [points of zere ampltude) and
antinodes (paints of maximum amplitude) at fixed positions. Examples includa waves
on a siring, and sound wawes in a pipe. The term "standing wave”" describes that the
wave pattem remains fixed in space, oscillating between positive and negative values,
without moving forward or backward,

Let us consider the superposition of two waves moving along a string in opposite
diractions. Figuras 7.6 (a) and (b) show tha profle of two such waves at Instants
=074 T2 34 Tand T, whera T is the time period of the wave. We are interested in
finding out the displacements of the points 1, 2, 3, 4, 5, B and T at these instants as the
wavas superposa. Itis obvious thal the paints 1,2...,7 ara distant A'4 apart, A being the
wavelength of the waves. We can determine the resultant displacement of these points
by applying the principle of superposition.

Figure 7.6 (c) shows the resultant displacement of the points 1,3.5and 7 at the instaniz {
=0, T, T2 370 and T I can be sean thal the resultant displacament of thesa pomts s
always zero. These points of the medium are known as nodes. Here, the distance
beiween two conseculive nodesis A2,
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Figure 7.6 (d) shows the resultant displacement of the points 2.4 and § at the instants {=
0, T4, T2, 3T/4 and T. The figura shows that these paints are moving with an amplitude
which is the sum of the ampliludes of the component waves represented by arrows.
These paints are known as antinodes, They are stuated midway betwean the nodes
and are A2 aparl. The distance between a node and the next antinode is A'. Such a
pattern of nodes and antinodes is known as a stationany or standing wave,

Energy in a wave fransfars because of the mation of the paricles of the medium. The
nodes always remain at rest, so energy cannol flow past these points. Hence, enengy
remains “standing” in the medium between nodes, although i1 alternates batween
potential and kinetic forms at the antinodes. When the antinodes are all at their extreme
displacements, the energy storad is wholly potential and when they are simuktanaously
passing through thelr equilibrium positions, the energy s wholly kinetic,

7.5 STATIONARY WAVES ONASTRETCHED STRING

Consider a string of length / which is kept strelched by clamping its ends so that the
iension in the stringis F.

(a) StringPlucked at its Middle Point

If the siring is plucked at its middle point, two fransverse waves will originate from this
paint, One of them will move towards the left end of the string and the other towards the
right and. When these waves reach the two clamped ends, they are reflected back thus
giving rise ko stafionary waves, As the two ends of the siring Srola op

are clamped, no motion will lake place there, So, nodeswill :

be formed at the two ends and one mode of vibration of the
string will be as shown in Fig.7.7 (&) with the two ends as
nodes with one antinode in bebwaen. Visually, the siring Fzl

Z
seems to vibrate in one loop. As the distance between tWo gig 7.7iak Firet moda of wheason

|
|
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conseculive nodes is ome half of the wawvelength of the waves set up in the string, =0 in
this mode of vibration, the length fof the string is

P o= AS2
e B Ll

whara A, is tha wavelength of the wavas sat up in this mode. The speed v of the waves in
tha string depends upon the tension F of the string and m, the mass per unit length of the
string. It is independent of tha peint from where string is pluckad to genarale wave. It is

given by
V= JE ()
m

Knowing the speed v and wavelength A, tha frequancy f, of the waves is

v v
f % ET;
Substituling the valua of v, toget f = %ﬂ 5 (r.4
m

Thus, in the first moda of vibration shown in Fig. 7.7 (a), waves of frequency £, only
will be set up in the given siring.

(b) String Plucked at Quarter Length

If the same string is plucked from one quarter of its length, again stationary waves will be
sel up with nodes and antinodas as shawn In Fig. 7.7 (b). Note that now tha string
vibrates in two loops. Thiz pardicular configuration of noedes and antinodes has
developed because the string was plucked from the position of an antinode. As the
distanca batwean two conseculive nodes i half the wavelemngth, sothe length £ of string
is equal to the wavelength of the waves set up in this mode. If A, is the measure of
wavelength of these waves, then,

g Dauibia oop
f =z ==
& 2
P = E‘—lﬁ-
A= B (7.4) L

Comparison of Eq. (7.4) with Eq. (7.1) shows that the wavelength in this case is half of
thatl in the first case, Eg, [7.2) shows thal the spead of the waves depends on tension
and mass per unit length of the string, it is independent of the point where the string is
plucked. So, speed v remains the same in both cases.

If £, iz frequency of vibration of string in its second mode, then

v
E = e
2 A
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Since, hy=

¥

£ = 3

Multiplying and dividing by 2, we have

fo
= 2
v
We know that fi= Y
So L= 2f,

Thus, when the string vibrates in two loops, its frequency becomes double than when i
vibrales in ona loop.

(¢) String Plucked atan Arbitrary Point

Let the slring resonatas in n number of loops with {n + 1) nodes and n antinodes, Thus,
we can say that if the string is made to vibrate in n loops, the frequency of stationary
waves set up on the string will be:

f = nt%ﬁ]

LA 7 (7.5)
oW F = n
and the corresponding wavelength is, 3 = %‘! v A )

wheren=12.3.....

It is clear that as the string vibrates in more than one loop, 18 freguency F goes on
increasing and the wavelength A gets correspondingly shorer, However, the product of
the frequency fand wavelangth A is always equal to v, the speed of waves,

The above dizscussion clearly establishes that;

1. The stationary waves have a discrete sel of frequencies f, 2f_ 3f, .. nf, which s
known as hammonic series. The lowest characteristic frequency of vibration is the
fundamental frequency f. carmrespands to the first harmaonic. The frequency £, = &f,
corrasponds ta the sacond harmonic and So on,

2. In other words, gquantum jumps in freguency exist between the resonance
frequencies. This phenaomenon is known as the Quantization of Frequancies. It
means £, =nf, wheren =1, 2, 3, ..(Inlegral multiples). The stationary waves can be
saf up on the string only with the frequencies of harmonic series determinad by the
tension, length and mass par unit langth of the string, Wawes which are not n
harmonic series are quickly damped ouf.

3. The fraquency of a string an a musical instrumeant can be changed aither by varying
the tension or by changing the length. For example, the tension in guitar and viclin
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sirings is varied by tightening the pegs on the neck of the instrument. Once the
instrument is luned, the musicans vary the fraquancy by moving their fingers along
the nack, thereby changing the kength of the vibrating portion of the string.

Harmonics

In the above example, the set of all the possible standing waves, having frequencies f,
2f, 3f, ..., nf, are callad harmonics of the systam, The lowest or fundamental frequency
of all the harmonics g callad the fundamental or first harmonic. Subsegquent frequencies
are called as second hamonic, third harmaonic, ete.

Example 7.3: A stationary wave is established in a string which |z 120 cm lang and

fived at both ends. The string vibrates in four segments; at a frequency of 120 Hz,
Determine its wavelangth and the fundamental frequency 7

Solution: - = s
i =120 cm 1|:mnr- 12m
n=4
fa= 120 Hz
e
L=

{i} Asthe slrir.:rg vibrates in four segments and the distance between two consecutive
nodes is A2, 5o the wavelength of the stringis:

¢ =nlt
E

1"= ._F M guitar slring is pluched a3
n iLs canire. Whal hanmaonic is
212 iaboch

o= 0.6m

{if] Hstring vibrates in nloops, then fraquency of stationary waves will be:

S
= 4f
A alalidnany wavs s lormad
120 = 4f.| or & siring with 8 fregqusncy
of 100 Hz. ¥ihe string s 2m
Fi = @ kang, hoe mary nockas gnd
- d -arnodes are b rned?
f== 0

7.6 STATIONARY WAVES IN AIR COLUMNS

Staticnary waves can be set up in other media also, such as air column inside a pipe or
luba, Acommon example of vibrating alr column is in the argan pipe.
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Organ pipe

An organ pipe is a wind instrument in which sound is praduced, due to selting up of
stationary waves in air column. It consisis of a hollow long tube with both ends open or
with one end open and the other closed. The relationship between the incidant wave
and the reflected wave depends upon whather the refiecting end of the pipe s open or
dosad,

(i} I the reflacting end s open, the air molecules have complets freedom of mobon and
this behaves as an antinode,

{ii} If the reflecting end is closed, then it behaves as a node because the movement of the
malecules is restricted.

Modes of Vibrations

Stationary longitudinal waves occur in a pipe as discussed by the following two
cases:

Case (1): Modes of vibrations in an organ pipe open at both ends
Letus consider an organ pipe of length ¢ which is open at both ends, As at the open end,
an air molecule has complete freedom of motion o it acts as antinode as shown in
Fig.7.8. In this figure, longifudinal waves et up inside the pipe have been represented
by transverse curved lines which reprasent the displacement and amplitude of vibration
of air pariiches al various points along the axis of pipe.
(a} Fundamental mode of vibration

In this case, as shown in Fig.7.8 (a), there is only one z

node M at the middle of the pipe. As both ends of pipe are i =% ==
apean, there are two antincdes at both the ands. ITA s the
wavelength of sound. then * 2 o
:i |==|%'| f= HEJ
f = —
2
or Ay o= 2F

bttt {7.7) m
el i -

If, is the frequency of sound, then the velocily of sound is:

road 3L )
v=F 4, ? =
. Fig. 7.8:
fr= vy Sialinany knghudeal wesse ina
Putting value of A,, we have ploa open & bolh ends,
il 2 A7.8)

This frequency is called fundamental frequency or first harmonic.
(b) Secondmode of vibration
If thera are three antinodes and two nodes, frequency will be twice that of fundamental
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frequency. It i second mode of vibration as shown in Fig.7.8 (b). In this case, there ara
three anlinodes and two nodes.

If &, is the wavelength of sound then,

SV
= 3*2%3

f = (1+2+1) ;'l?’

ar i-=1

e =

If fz |s the frequency of sound. then speed v of sound becomeas:
¥V = fa iz

or f, =

—
B
ra |q

FPutling the value of &5, we have
r=¥
2= g

¥

f="2F —=f
or z i { Er 1}

(e} nth mode of vibration
Similarly, fraquancy for air column vibrating in n loops is:

F= mv2e)

f.= nf,
and wavalengih is

s B a o S R (7.9}
where n=12345 ...

Sa, the longitudinal stationary waves have a discrete set of frequencies f, 2f, 3f, ....af,,
which is known as hamonic sernes. The fraquency F, 15 known as fundamanial
frequency and the others are called harmonics.

Case (2): Modes of vibration in an organ pipe closed at one end
Let us consider an organ pipe of length / which is closed at one end. Then at the closed
end, we gat a node while at the open and, we getan antinode as shown in the Fig. 7.8,
(a) Fundamental mode of vibration:

Fundamental mode of vibration has ona node and one antinode as shown in Fig. 7.9 (a)
If A, is the wavelength of fundamental mode then length of the pipe is:
_ A
VR
or b YR PR {7.10)
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S0, the speed v becomes

=
il

o
i

fr=

(- by =40)
The frequency f, is called fundamental fraquancy.
{b) SecondMode of Vibration:

Sacond mode of vibration contains tea nodes and two
ani-nodes as shown in Fig. 7.9 (k).

I 4, s the wavelangth, than léngth of the plpe is:

i,
.l
1,
o
45

)
il

+

n |

_h
1]
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A Schentific Fact

g
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&
n

=

Futting valua of .3, we have v=f;};

¥
I'; - =t
|
Y
Ay
ar f, = e
I
=0 = 3f [-—=Fl

This is caled second harmonic.
{c) nth mode of vibration

If air cobumn vibration in mloops, then frequency £, is:

[T In a0
L = r--l riving
4, shout lika jot af wr
§:u which |
= and the @i column In the pips
and the wavelength i, is: STt
A =%_.......1..{F;1E} where n = 13,5, ..

By studying both cases, we conclude that the pipe which is open at both ends is richer in
harmeonics than that of closed at one end.
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Example 7.4: An organ pipe has a length of 50 cm. Find the frequency of its
fundamental note and the next harmonic, when itis:

{a}openal both ends
(b} closed &t one end
{speadof sound =350 ms™)

Solution: fzﬁﬂm:ﬂm:ﬂjm
100
w= 350 m s
a) When pipe is open at both ends:
Fundamental fragquency fi=2

Nothmreriobaster =2

The frequency for nth harmonic in an open organ pipeis:  crr m:;,:m";ﬁ“ i)

r:l= ﬂ‘%_ 'l'i'1'1&rlrl='|.2.3.......... add hamanics. .

s0 the fundamental fm.quanc:y is,

1= 350
f,= n=1
‘T 2% 05 Pt

f =350 Hz
Next harmonic frequency i.e., n= 2 |5

b) When pipe is closed at one end:
Fundamental fragueancy f=7
Mext harmonic frequency f,=7

When the pipe is closed at one end then frequency far nth hamonic is

f = n4—";. whenn=1357........

So fundamental frequency is;
1 350
4 =05
F =176Hz
Mext harmonic frequency e, n=3is

f|= putn=1




M

v
4¢

_3x350
~ 4x0.5

f, =525Hz

f;

]

Exampile 7.5: A church organ consists of pipes, each open at one end, of different
lengths. The minimum langth is 30 mm and the longest is 4 m. Calculate the frequency
range of the fundamental notes. (speed of sound = 340 ms”)

30
Solution: ¢ =30mm=-—m=30x10"m
4 1000

Fae =4 M
v = 340 ms!

Frequency range = 7

For an organ pipe open at one end only:
=

e F A flutis plyer nofices that tha fuse s
producing @ pch which s slightly
{1} Minimum lkength E:m “ﬂhg?mﬂlﬂ ba tha causs of
For fundamental frequency, put n =1
F 5
e 4""””
£ 1= 340

- a0 %10
.. = 283333 Hz

(i) Maximum length:
For fundamental frequency, putn = 1
v

F -

1, i

o

o]

¢ _1x340
Lmn = a4

f 0= 21.25Hz
So, the fundamental frequency range is approxamately from 21 Hz to 2833 Hz.
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7.7 EXPERIMENT DEMONSTRATING STATIONARY WAVES
USING MICROWAVES

Microwaves are a form of electromagnetic
radiations. Theay are called "micro” waves
bacause thalr wavalangths are typleally of the
order of millimetres or centimetres, much shorler
than radicwaves. Statlonary waves, also known
as standing waves, can be produced by
microwaves when they are confined to a specific
reglon or cavity such as wave guides or resonant
chambers. In these structures, microwaves can
bounce back and forth, creating a standing wave
pattern with nodes and antinodes. |t ocours
when the microwave frequency matches fhe
resonant frequency of the cavity.

The stationary waves can be created using
microwaves by the following simple method as

=iructune of Microw:sve Unsan

showninFig. 7.10. Mezal box i kemp Weirclow has fine
misrowana insxde meln mesh ovar 8
Bloroaewa Probss Mlars!
SIS detacior FEfanior

Fig. T.40; Expenmerial setup for saTonary Waves LN Memwawve

The experiment setup consists of 8 microwave source (transmitter), & probe detector
and a metal reflector (a metallic plate for the refliection of microwave), Three of the
mentioned are placed inline.

The waves coming oul of microwave source ane moving towards the metal plate and
than reflected back, The reflected wave and incidan! wave superpose and creale a
stationary wave pattern, This can be detected by a probe detector placed betwaen
transmitter and metallic plate. The intensity of the signal can be cbserved by the
detector. You can maove the plate or detector to observe antinode and node. By finding
the distance from one antinode to the next antinode, the wavelength of stafionarny wawve
can be found.
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7.8 DIFFRACTION OF WAVES

Diffraction of waves is the bending of waves around the

sharp edges or cormers of obslades or the spreading of
waves beyond a bamier. t occurs when a wave encounters } ';])
a physical barrier or an opening {(a skt) thal i comparable in

size to the wavelength of the wave. The longer the
wavelength, the greater the spreading and vice versa.

Diffraction can be observed in vanous types of waves,
including water waves, sound wawves, light waves and

elecliromagneatic waves.
Some examples of the phencmenon of diffraction include; ) :l ) )
« Hearing of sound waves around comers or through

Small wawolonpin, Small diffraction

door way from where they were generated as sound
waves bend around the cormers. | arpe wavalangth. Larges diffraction

« Diffraction of X-rays by crystals as the spacing between the regular arrays of aloms
iz of the order of X-rays wavelength.

Diffraction is a fundamental aspect of wave behaviour and has many practical
applications in various fields.

The Ripple Tank

Fig. 7.11 shows arippke tank. Hizs a
very ussful apparatus not only to
generale waler waves, bul also to
demonsirate wave properfies
{such as reflection, diffraction and
refraction).

Ripple tank contains water, vibrator
{e.g. a molorized oscillating
needie), obstacles (e.g. a small
reclangular block or a semicircular
barrier) and gap widihs of diffierant
sizes, It creates a series of
concentric circles or paraliel waves

using the vibrator. An obslacle is

placed for creating a gap with a | ‘\
specific width, The experiment can H) !
be repeated with different gap 4 J),l
widths.

Itis chserved that when the gap Senall gap, Increassd dfscion  Large gap, Decresssd diffracton
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width is small compared {0 the wavelength, For your Information

diffraction is significant and the waves bend around
the obstacle, creating a semicircular pattern. As the
gap width increases relative to wavelength,
diffraction decreases and the waves pass through
the gapwith less bending.

Thiz expenmant demonstrates the qualitative effect
of gap width on diffraction in a ripple tank, illustrating
how the relationship between gap width and  gifiraction of white ight is shown by
wavalength affects wave behaviour. a hine diffrackon grating,

Example 7.6:

In a ripple tank, a wave genaralor
produces 500 pulsesin 10 5, Find the
frequency of the pulses produced?

Solution:  n= 500 pulzes

=103

Fe= " The fine rulimga, esch 0% um
wida on a compact discfunction

T _t 108 ins as a diffraction grating, Whan a
" n OO 5O gmall source ol while light
lluminatas a dec, the difracied

11 A light fiorma coloured lanes that
f = T ‘1?&'3'5' S0s are compesite of the diffraction
praltenn Froin B rulinggs.
= f = 50pulsess”
7.9 BEATS

When two waves of zlightly different freguencies, travelling in the same direction overlap
aach other then there is a perodic vanation of sound bebween maximum and minimuem
loudness which is called as beats.

Tuning forks give out pure notes [single frequency). i two tuning forks A and B of the
sama lrequency say 32 Hz are sounded separately, they will give out pure notes. I they
are sounded simultaneously, itwill be difficult to diffierentiate the notes of one tuning fork
from that of the other, The sound waves of the two will be superposad on each other and
will be heard by the human ear a2 a single pura note.

If the tuning fork B is koaded with some wax or plasficens, its frequency will be loweared
glightly, say it becomes 28 Hz. If now the two tuning forks are sounded together, a note of
alternately increasing and decreasing intensity will be heard, This note is called beat note
ar & baat which is due to interferance betweean the sound waves from tuning forks Aand B.




M

Fig. 7.12 (a) shows the waveform of the note emitted
from a uning fork A, Similarly, Fig. 7.12(b) shows tha

waveform of the note emitted by tuning fork B. Whan AANIRTRIRH gL AR L
both the tuning forks A and B are sounded together, -

the resultant waveform is shown in Fig. 7.12(c) It w || '..?'- VAAGANARN
shows how do the beat note occur. At some instant X, ) s Ak

the displacement of the two waves is in the sams H_ITI-*;‘H,“ . i-r-ﬁ'-'r-l.ﬂ
direction. The resultant displacement is large and a 'I | i 1 _I.':::; Tl | :
loud sound is heard. sy il e | Sl Ve
Aftar 1/4 s the displacement of the wave due to ona Ty YT Ay T
tuning fork is opposite to the displacement of the wave Resullant weva

due to the other tuning fork resulting in minimum Fisgl. 7,12 Foemation of bests
displacement at ¥, hence, faint sound or no sound is

heard,

Anothar 114 s later, tha displacements are again in the same direction and a loud sound
is heard again at Z.

As the differance of the frequency of the two tuning forks is also 4 Hz so, we find that
the number of beais per second is equal o the difference between the frequencies of
the tuning forks.

f,=32Hz, f,=28Hz f>f,
Mo ofheals= f_—f,,,= IFfHr-Z8Hz=4d

However, when the diference between the frequencias of the two sounds iz mone than
10 Hz. it becomes difficult to recognize the beats.

Pictorial Comparison

Lanpiueding waue

s syilam

Saound werves
Transverse wawe
Exnmygla
‘ g{\ £\ /\\/\ .
B \'
[edewamn
Vishlks gt Truugh Traugh

l.l'i'u




_"-'l"”'{i Vs andibriions. B

Cne can use beats to tune a string instrument. such as piano or violin, by beating a note
against a note ol known freguency, The siring can then be adjusled 1o the desired
frequency by tightening orloosening it until no beais are heard.

Beat Frequency (f_,)

The difference batween the frequencies of the two waves is termed as beat frequeancy
f Thqltimemtewa between the two successive loud sound is T=§—1 . Therefore,

bl ™

fheat =
Tuning Musical Instruments

Hora are some eaxamples of how beats are generated in musical instruments:
1. Guitar: When playing two strings with Do you know?
slightly diffarent tunings, bealts are

created. For example, playing a standard
tuned string and a string tuned a few
cents higher or lower,

2. Piano: Playing two keys white and black,
adjacant o each other, creatas beals.
el

3. Violin: VWhen playing two stnngs with

slightly differenl bow pressures or » clarinel
speeds, beats are generated. Eﬁq i

4, Drums: When two drums with o
slightly different tunings are played
simultaneously, beals are created. Ta

5. Flute: When playing two notes with gy VG

slightly different embouchure (lip and 3
The sound producad by mostof siring and wind

facial muscles) positions, beals are o . i mants is dus ko the formation of

generated. stalionary waves of standing waves in hase

Ingtrumants,
6. Organ: VWhen playing two pipes with i

slighfly different tunings, beats are
created,

7. Synthesizer: Genarating two oscllators with slightly differant frequencies creates
beats,

In each of these examples, the slight difference in frequency between the two sound
sources creates a pericdic increase and decrease in amplitude, resulting in 2 "beat” or
pulsation effect.

Muszicians often use beats intentionally lo create interesting rhvthmic effecis, add
fexture, or produce & sense of tension and release. However, in some cases, beats can
be unwanted and may reguire adjustments o wning, pitch, or playing technigue o
minimize their impact.
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Example 7.7: Two tuning forks exhibit beats at a beat frequency of 3 Hz. The
frequancy of one fork is 256 Hz, Its fraquancy is than lowarad slightly by adding a bit of
wax to one of ifs prongs. The two forks then exhibit a beat frequency of 1 Hz. Determine
the frequency of the second tuning fork.

Solution:  Frequency of firstluning fork =1, =256 Hz
Beal frequency before loading=3Hz
Beat frequency after loading =1Hz
Frequency of second tuning fark =1,=7

As f-1 =%n
Then f.=fxn
CHifog viuns, wa e In 1711, F: J. Shame, who was
f,=256 £ 3 mer u‘f'ﬂnﬁﬂ'“““
Either hLhedb+3, or F,o=256 -3
fy = 289 Hz o 253 Hz

Let us consider 259 Hz as correct answer (Le., frequency of 2econd wning fork). When
first fork is loaded with wax. the frequency of first fork must fall below 256 Hz i.e., 255,
254 and thus tha number of beats producad per second will ncrease and will be graatar
than 3 beats. Since the number of beats per second decreases on koading first fork is
ana, therefore 259 Hz is not comect frequency of second tuning fork.

Thus, Correctfrequency =f, =253 Hz

254 —253=1Hz
7.10 INTENSITY (/) OF AWAVE

Intensity is definad as the amount of energy transmitted per unit area per unit time in the
direction of propagation of progressive wavea. It is a measure of the power of a wave and
s usually dencted by the symbaol °". it is measured in units of watts per sguare meter
{Wm™.

A progressive wave or travelling wave iz one thal travels through a medium in a
consistent direction and transfarming enargy from ane point to anathar. It s 8 wave that
propagates or moves forward, as opposed (o a stationary or slanding wave. Examphes
of progressive waves include water waves, soundwaves, lightwaves efc,

By definition, the intensity of a wave, is

A=t
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=]

I =% BBy

Here
I = Imensity of wave in (W m™)
E = Energy in joules [J)
I=Time In saconds (5}
F = Power in watls (W)

Wea know that in machanical waves, such as sound waves, waler waves, orwaves ona
vibrating siring, energy is stored as kinetic energy and potential energy of the medium's
particles. How much energy is stored depends upon the displacement (ampbtude  of the
particles from the mean posltion. Therefore, the intensity | of waves 2 proportional to the
square of the ampltude A, i.e.,

Ty
or fo= R e (713)

Hera k' is the constant of proportionality and depands upon the physical propertias
of the wave and the medium.

Example7.8:

{a)} Awave has an intensity of 0.5 W m” at a distance of 3.0 m from the source. What is
the power of the wava?

{b) Two progressive waves have intensities of 0.5 W m™ and 0.25 W m™. Find total
intensities of two waves,

Solution:
(@) | = 05w
ro= 30m Freguency and amplilude of a
] traveling wive are indapendant of
P= 7 wach othar, That is why oo Gan furm
(= up the vohame of 2 - song [onese
WAt amplitude ) without changing its pitch
A (which cegends on fraquancyl,
il e
: e
Putiing the values, 05 = —
g 4 » 3.14(3.0)°
F = 0.51=13:04
P = BB52ZW
{b) o= LSWm'
L, = 0.25Wm*




M
?
L+ 1l

Cran you find the decibel kevel
0.5+0.25 of a raveling wave whose

075 W imtans#y & 10Wm™T

Example 7.9: A speakeris emitting sound waves with a power of 50 watta. If the sound
waves are spreading out evenly in all directions and the intensity of the sound waves is
meaasured at a distance af 5 m from the speaker, what s the intensity of the sound waves

if the area of the sphere (the surface area of a sphere) at that distance is approximately
314 m'?

Solution: Power{P)= 50W
ArealA) = 34m’

ey = £

f
/
f
f

P Sound cannof traval through
[= = Waciaw), &5 therne ane no partces
A te trans it the sound wave,
| - S0W
314 m
I = D158 Wm*

7.11 DOPPLEREFFECT

The apparent change in the frequency (or pitch) of waves due 1o the relative motion
between the source and observer (listener)is called Doppler Effect.

This effect was first observed by John Doppler while he was observing the frequency of
Fght emitted from a star. In some casas, the frequency of emitted light was found to be
slightly different from that emitted from a similar source on the Earlh, He found thal the
change of frequency of light depends upon motion of 2tar relative to Earth.

This effect can be observed with sound wavas also. For exampls, when an observer is
standing on a raibway platform, the pitch of whistle of an engine coming towards the
platform appears o become higher to an observer standing on the platform. However,
the pitch of whistle of an engine going away from Lthe platform appears 1o become lower
to an observer sianding on the platform.

Consider a source of sound S al rest which emits sound waves having wavalength A, Lel
spead of the sound for a stalionary observer (e, listener) iz v then the number of waves
received by observerinone secondi.e., frequency f is

W

=
e

A
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Case 1: [When source of sound moves lowards the stationary
observer]

When the source moves towards the stationary observer C with velocity u, then waves
are comprassed and their wavelangth is decreased as shown In Fig. 7.13 (g). In this
case, the waves are compressed by anamount given as
Y,
A ;
The compression of the waves is due to the fact that Chemrver O
same number of waves are containad in a shorlar space - '
depending upon the velocity of the source. The Obsererd M,

wavelength observad by the observer T is then

TR O
W [F
— . e ——
ol HTETy
V=,
lﬂ:

Hera AA is the decraase in wavelength in one sacond and
is called Doppler shift.

Thus, the numbar of waves received by absarver C in one sacond [i.a., changed or
apparent frequencylis

far
""I:

Putting the value of A., we have

v
]
(v =it )
N
[ 1
W
£ = T |f
L L |
As AR
V-,
Tharefors o= 1

Thus, the apparent frequency of sound heard by the observer increases which in turm will
increase the pitch of sound,

Case 2: [When source of sound moves away from the stationary
observer]

Whean the source moves away from the stationary observar D with valocity U, then waves
are expanded and their wavelength is increased az shown by Fig, 7.13 [d). In this case,




M
thewaves expanded by anamount
by = 2
f

The expansion of the waves i3 due to the fact that same number of waves are now
contained in a large distance. The wavelength obsarvad by the observed Dis then

A= At AR
whera AM is the increase in wavelength in one second and is called Doppler shift.

Thus, the number of waves received by observer D in one second (i.e., changed or
apparent frequency jis:

L=vih,
Futting the value of A, we have
¥
ol
|+
o -1
f”"_twu,:l_!r
v
As VAL <1
Therefore, fhef

Thus, the apparent frequency of sound heard by the observer decreases which in furn
will decrease the pitch of sound.

Do You Know?

Owvardapping Shockwawn

Delphin 150= 150000 SO
ic)
Bal 1000 — 120,000 Az 3 plane accalerates, it buikds up & front of
Cai B0 — P00 Air presssune by g bing e in frond ofiL, When
15 e It passes the speed ol sound, the pressoe
Dag B0, trails behind lke 8 boat's wake, forming a
Huiman 20— 20,000 S0nic shockwavs.
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Example 7.10; Two lrucks P and Q travelling along a motorway in the same dirsction,
The Inading truck P travels at a steady speed of 12 m s”, the other truck Q, travelling ata
steady speed of 20 ms”, sound its harn to emit & steady note which P's driver estimate,
has a frequency of 830 Hz, What frequency does ('s own driver hear?

(Speed of sound =340ms™)

Solution:
y, = 12ms’ Sourcs (2 ma) Lihesryeer {12 1 7]
v = 340ms" ® e ® @ - ®
f, = B30Hz
Fo= 7

Speed of Q relativeto P =iz =2 ug=up =20 -12=28m 5"

f =[ -L]r
v-u,

JF"z['w—wu,]%

Pulting the value, wa have

HSD:[ At ]f,:,
340- 8
340
B30 =2 if
[332]“
Eﬁﬂxﬁﬁi]
AT e
. & ( 340
f, = B10.47Hz

Example 7.11: Atrain sounds ils hom befora it sets off from the station and an obsarver
waiting on the platform estimates its frequency at 1200 Hz. The frain then moves off and
acceleratas steadily, Fifty seconds after depariure, the driver sounds the hom again and
the platiorm observer astimates the frequency at 1140 Hz, Calculate the train speed 50 2
after departure. How far from the station is the frain after 50 5.

(Spead of sound = 340ms™)

Solution:
Driginal fraguency of hom =f=1200Hz
Apparent freguency =f=1140Hz

Speed of sound =y=340ms"
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Time ={=5h0s
Speedofsource (ie., frain] =u,=7
Distance covered by the train =35=7

(i) f'=[ ‘ }r
¥+l
Putting tha valuas, we have _
340
e 1
1140 [34[!+u,]k 200
30 = 1200
Mbsu=
u, = 357.89 - 340
= 17.89m &’
{ii) S=ut
i+
S- [ : ]:

5= [[I'+ 1?’.55] 56

8= 448 m

Do Yoo Know?

Batls névigate and find food by

7.12 APPLICATIONS OF DOPPLER EFFECT

Doppler effect is also apphcable to elactromagnetic
waves, One of its important applications is the
radar system, which uses radio waves to determineg
the elevation and speed of an acroplane. RADAR
(RAdio Detection And Ranging) is a device,
which transmits and receives radio waves, If an
aercplane approaches towards the radar, then the
wavelength of the wave reflacted from aeroplana
would be shorer and i it moves away, then the
wavelength would be larger as shown in Fig.7.13
{a) & Fig.7.13 (b), respactively. Similarly, speed af
satellites moving around the Earih can also be
determined by the same principle.

Plane approaching ==

pra

'?FFJ e

o ;Tﬁmg
JF
i
/N
Fig. 7.13:

Adeequency shill B wsed in A e o delect the
RGO AN ARTOEEA
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SONAR is an acronym dermved from *Sound Navigation And Ranging”. It is the general
name for sonic or wirasonic underwaler echo-ranging and echo-sounding system,
Sonar is the name of a technigue for detecting the presence of objects under water by
acoustical echo. In Sonar, "Doppler detection” relies upon the relalive speed of the
largel and the detector 1o provide an indication of the target spead, It amploys the
Coppler effect, in which an apparent change in frequency occurs when the source and
the obsanser ara in relative motion o one another, s known military applications include
the detection and location of submarines, controf of antisubmarine weapons, mine
hunting and depth maasurement of sea,

In Astronomy, astronomers use the Doppler effect to calculate the speeds of distant

stars and galaxies. By comparing the line spectrum of light from the star with light from a

laboratory source, the Doppler shift of the star's ight can be measured. Then, the speed

ofthe star can be calculated.

{In Stars moving away from the Earth show a red shift as Statomary slar {:*’
shown in Fig.7.14(b}, The emitted waves have a +* > &3
kenger wavelength tham if the star had been at rest. So, C‘\
the spectrum is shifted towards longer wavelangth, - .
1.2., towards the red end of the spectrum, Astronomers @
have also discoverad that all the dislant galaxies are Srar receding
moving away from us and by measuring thair red
shifts, they have estimated their speeds.

(i) Stars moving towards the Earlh show a blue shift as
shown in Fig.7.14(c). This is because the wavelangth
of light emitted by the star are shorter than if the star
had been at rest. So, the specirum is shifted towards

shorter wavelangth, |.e., to the blue end af tha ")
Specinim,
Anather important application of the Doppler shift using Siar

alectromagnatic waves is the radar speed trap.
Microwaves are emifted from a fransmitter in short bursts.
Each burst is reflected off by any car in the path of
microwaves in balween sending oul bursis. The

transmitier is open o defect reflected microwaves. i the
reflection is caused by a moving obstacle, the reflected
microwaves are Doppler shifted. By measunng the -

Doppler shift, the speed al which the car moves is Fig. 714

i

L8]

Ui
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calculated by compuler programime.

Satellite Navigation uses Doppler shift to determine satellite velocity and position,
enabling accurate kecation tracking.

Satellite Communication alzo uses Doppler shift compensation ensuring stable
communication sigrals,

Doppler radar detects wind velocity and precipitation patterns. Doppler shift helps
maasure Earth's surface velocity and dafarmation,

Doppler echocardiography measures blood fiow velocity and detects cardiac
abnormalities, such as valve stenosls of regurgitation. Doppler echocardiography
oplimizes pacemaker satfings,

Dopplar ultrasound measures bioocd flow and calculates cardiac output. Doppler
ultrasaund detects vascular stenosis or occhusion.

Example 7.12: The wavelength of one of its lines of the absorption spectrum of a faint
galaxy is identified as Ca-a line found to be 478 nm, The wavelangth of same line s
observed and measured as 397 nmin the laboratory.

{a} Is the galaxy moving towards or away from tha Earth?

ib) Compute the speed of the galaxy relative fo the Earth.

Solution:
Laboratory measured onginal wavelength
A= 397 nm =397 x 107m
Changed or Apparentwavelength  A=478nm=478x10°m
Speed of light c=3x10"mg"
{al v = fi
e =Ffk (-¥=£}
=" F =
'8
;o= 3x10ms”
397« 10" m
f = 786x107"<10" x10%s"

Laboratoy frequency f = 7.56x=10"Hz
Apparent frequency 7 = f—

Ax10ms”
A78 =107
6.28 « 10" Hz

o
]
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A=k of =
-+ The galaxy is moving away from the Earth.

W
b = f
o
c
E f =g
s} -0
Futting the values, we have
i 3100 i
i [:3!f:-:‘!llllft+r.;I Calne Galactic Motion
A galaxy is moving away from us af
310 +u, = 3"1#"7'55::1:” 204% of the apeed oflight (Le, 0.2 c).
6.28 « 10 Vit clesprvn @ speciral ling from this
galaxy that s normally emitted Bt &
= ﬁﬂm{-ﬁ—:ﬁ:—:'ﬂl}l’a winvelength of S00nm,
6.28
= 6.12x10'm g’
a1

—] QUESTIONS E—
! Multiple Choice Questions 'l

T.1 Thesimpie wave speed equalion is represented Dy

@v=n. fbjl-'-% (£ v = fa fﬂ}r:ﬁ%f

7.2 The prnciple of superposition inwaves s siated as;
{a) the displacement of a wave is the sum of the displacemenis of ifs individual
components
(b} the velocity of a wave is the product of its individual components
{c) thefrequency of a wave is the difference of its individual components
(d) theamplituede of a wave is the ratio of itz individual components
7.3 Anocdeinastationary wave is
(a)a point of maximum displacement (b} a pointof intermadiate displacemant
(&) a point of zero displacement (d)a point of infinite displacemeant
T4 Ananiinode ina slaticnary wave s
(a)a point of maximum displacement (b} a pointof minimum displacameant
(o) & point of zero displacement (d}a point of infinite displacemant
.5 Slatonary waves are gefined &s:
{a)waves that move with 3 constant velacity
(b} waves that move with a changing velocity
(c) waves that oscillate in a fixed position
{d) waves thal propagate through a rmedium
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T.6 Hamanies are:
{a) integer muliples of a fundamental frequency
{b] integer submultiples of a fundamenial frequency
(c) random fraquencies
(d} non-integer multiples of a fundamental frequency
T.7 Thermsull of canstructive interferance batwean Wowaves i3 reprasented as:

{a}adecreaseinamplitude (b} anincrease in amplitude
{¢)no change in amphtude id)ashiftinphase
7.5  Ifthe ampliiude of the wavea |2 iripled, then the amount of energy 1= Increased by
(&) 3times (b)Btimes  {(c)9times {d) 12 limes
7.9 Whatiypeof waves do haadphonas usa to produce sound 7
{a] Electromagnetfic waves (b} Mechanical waves
{c) Pressure waves 1d) Longiludinal waves
7.10 The typical frequency range of microwavesis
{a)10"-10°Hz (B 10°-10"Hz
{c) 10 -10"Hz {d)10*-10"Hz
7.1 Thebanding ol waves around an obstacle is called as!
{a) refraction (b} reflection
{c)diffraction {d}interference

7.12 The Doppler Effect used in astronomy is for:
{a] measuring the diameters of stars
{b) datarmining valacity of galaxiss
{c)analyzing properbies of lack holes
{d} studying behaviour of electromaagnetic waves

[ Short Answer Questions )|
7.1 What are the conditions for interference to ocowr?
7.2 Differentiate batween constructive and destructive interference of waves.
7.3 \What ara coherent waves and coherant sources? Give examples,
74 Distinguish batween longhudinal and transverse waves.
7.5 Isit possible for iwo identical waves fravelling in the same direction alang a string to
give rise toa stationary wave? How is it so?
7.6 How would vou apply Doppler effect in studying cardiac problems in humans?
7.7 What is meant by diffraction of waves? Forwhat purpose, the ripple tank is usad?
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| Constructed Response Questions [j|

7.1 Which measurement of a wave is the most important when determining the wave’s
intensity?

7.2 Can you apply Doppler effect to light waves? Describe briefly,

7.3 Can you compare the compressions and rarefactions of the longitudinal wave with
the peaks and trowghs of the transverse wave T Discuss.

74 How should a source of sound move with respect to an observer so that the
frequency of its sound does not change? Wite two examples.

7.5 Whyis it difficult o recognlze beats when the fraquency difference |s greatar than 10
Hz 7 Exemplify.

3 Comprehensive Questions E

7.1 State and explain the principle of superposition of waves. Apply thiz principle to
elaborate the working of noise canceling headphones.

7.2 Whal are standing waves7 lllustrale a delailed axperimeant that demonstrales the
standing waves using streiched strings.

7.3 Find the fraquencies of the harmonics produced in organ pipe when it is open al ong
end and when itis open at both ends.

7.4 Define and exemplify diffraction of waves, Describe this phenomenon by ripple tank
expariment.

7.5 Whalt is meant by the term beats? Prove that number of beats per second is equal to
the difference batween the fraquancies of vibrating tuning forks,

7.6 vWhatdo you understand by progressive waves ¥ Discuss the intensity of progressive
WAVES,

7.7 Keeping inmind "Doppler effect”, analyze the following cazses:
(&) when source of sound moves away from the slationary observer,
(b)) when source of sound moves towards the stationary cbserver

.‘ MNumerical Problems '

7.1 The speed of a wave on a typical siring iz 24 m s". What driving frequency will it

resonate if its length is 6.0 m? {Ans; 2 Hz)
7.2 The lowest resonance frequency for a guitar string of length 0.75 m is 400 Hz.
Calculate the speed of a transverse wave on the string, {Ans: GO0mMs")

73 Atuning fork A produces 4 beats per second with ancther tuning fork B. It is found
that by loading B with some wax, the beat frequency increases io 6 beals per
sacond. ftha frequency of Ais 320 Hz, determine the frequency of B whan loaded.

(Ans: 314 Hz)
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74 A stesl wire hangs vertically from a fixed point, supporting a weaght of 80 N al its
lower end. The diameter of the wire is 0.50 mm and its length from the fixed point to
the waight is 1.5 m. Calculate the fundamental frequency emitted by the wire when
itis plucked. Density of steelwire is 7.8 x 10" kgm™. (Ans: 76.2 Hz)

7.5 Average intensity of sunlight on the surface of the Earth is nearly 500 W m™.
Detarmine the amount of energy that falls on a solar panel having an area of .50 m"
in four hours, (Ans:3.6% 10" J)

7.6 (a) Wtheintensity of a wave is 16 W m™ and the amplitude is 2 m, what is the value

of constant k? (Ans: 4Wm)
{b) If the intensity of a wave is 25 W m™ and the constant k Is 5 W m™, what is the
amplitude? fans: 2.24m)

7.7 (&) Asound system produces 200 walts of power, If the sound |s directed at a

crowd with an area of 150 m*, what is the intensity of the sound?
tans: 1, A3 WmT)
(b} Alight bulb emits 100 watts of power. If the light is spread out evenly over a
sphere with a surface area of 400 m’, what is the intensity of the Eght?
(Ans: 0.25Wm™)

7.8 Aradio antenna broadcasts 500 watts of power, If the signalis received at a d_isl:anc_e

of 10 km, what is the intensity of the signal ? (Ans 4 x 107 Wn™)

7.9 An organ pipe has alength of 1 m. Determing the frequencies of the fundamental and

the first two harmonics:
(a) ifthe pipgiscpenatbothendsand (b} ifthe pipeisdosed ai one end.
(Speed of sound inairis 340 ms™)
(Ans: 170 Hz, 340 Hz, 510 Hz; 85 Hz, 255 Hz, 425 Hz respechivaly)

7.90 A train is approaching a station at 90 km k", sounding a whislle of frequency
1000 Hz, What will be the apparent frequency of the whistle as heard by a listener
sitting on the platform™ YWhat will be the apparent frequency heard by the same

listener if the train moves away from lhe station with the same spead? (Spead of
soundis 340 ms") tAns: 1079.4 Hz, 931.5 Hz respectively )



After studying this chapier, the students will be able to:

& Explain thal polarization jsa phemsmenon assodabed wilh ransverse waves,

& Define and apply Maelus's law [ = [, cos's to cakulsts the mtensity of @ plane-polarized

elecimmagnatic wava after transmission through a polarizing filker or a senes of polarzing filers,

[Caculption of the affect af & polarizing Mer on he nfensily of an unpolanized wEve 5 nol

reguired).

Explain the uss of polaroids in sky photography and strass analyss of matenal 5.

Descrbé qualilatively gravilalional waves

[Bs wawes of tha Intensity of gravity genarated by the accelerated messas of an orbital binary

swElEm that propagate aswaves oubwand from thedr sourcs &lihe spaad oflight],

& Sialethal a8 a gravitational waws pesses a body with friass disionion in space-lirme can causa the
body to stretch and comprass pariodically.

Sita that graviiational waves pass through tha Eanth due io far off cefaslial evends, bul thay ara of
very minule ampliuds,

#  Desconba the use of mtederometars In delecting grevitational waves
[Intacipromelars ar vary sansiive detecton devices that make usa of the interference of laser
beams (working and sel up detsils are nol reguicsd] and wers Lsed bo first delect the existence of
gravitatienal waves),

&

This chapter deals with two major areas of physics namely polarization of transverse
waves and gravitational waves respectively. We will discuss these one by one in this

chapter. Iﬁ-‘.'
B.1 POLARIZATION OF LIGHT
Physical oplics with reference to polarization deals with the ih

behaviour of light waves and their interaction with matter, o
Interference and diffraction effects prove the wave nalure of
light. These phenomeana, however, do not tell us whether the
light waves ara longitudinal or transverse, Polanzation of light

suggests that the light waves are fransverse in character,

In transverse mechanical waves, such as produced in a

strefched siring, the wibralions of the particles of the

meadium are penpendicular to the direction of propagation of

the waves. The vibrations can be orenled along vertical, Fig. B.1: Tranaverss waves
harizental or any other direction (Fig. 8.1). In each of these m:ﬂ:?mhngﬂm
cases, the btransverse mechanical wave is said to be  piina horzontal plane
—_————————— NSNS,
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polarized. The plane of polarization is the plane
containing the direction of vibration of the pariicles
of the medium and the direction of propagation of
the wave.

A light wave produced by ascillating charge consists

of a periodic variation of the electric field vector E

accompanied by the magnetic field vector B at right

angle lo each other. Ordinary light has componants

of vibration in all possible planes. Such a Eght is

unpolarized. On the other hand, if the vibrations are

confined only in one plana, the light is said to be

polarized, Unpolarized light is shown inFig. 8.2, i
Examples of unpolanzed light sources are sunlight, -
incandescent light bulbs, fuorescent light buls, friecen o e cbrne b an
fight from a candle or fira. directions,

Pofanzation is the process by which the electric and magnetic vibrations of light waves
are restricted to a single plane of vibration, |t is the property exhibited by transverse
wavas only such as light waves, It doas not occur for longitudinal wavas such as sound
Waves

How an Unpolarized Light be Polarized?

Anunpalarized light can be made polarized by the following methods:

1. Passinglightthrough a polarizing filtar (8.9, polaroid sheat).

2. Using a polarizing beam splitter.

3. Employing certam opbcal oryvstals or matariale (e.4.. calcits, guarz, elc, ).

The mast commaon method by which an unpolarized light can be polarized is by passing
it through a polarizing filter, such as a polarizing beam splitter or a polaroid shesl, When
an unpolarized kght passes through the polarized filier, only that eleciric field vector
which is parallel o the E

axis of polarized filler can
paszs through if, while all
other veclors are blockad.
The resultant kght then
becomes polarized as
shown In Fig. 8.3.

Thus, in gimple words, the
process of ransforming an
unpolarized light in a
polarized light is said to be
paolarization.

Podanzed fitlar

fuin Polarization

directan

Direclion
aof ray

Fig. B.3: Direction of polarized Hght
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The orientation of the electric field vector E of light
waves in a specific direction is the basis of Polarization.

8.2 TYPES OF POLARIZATION
Here are the basic typas of polarization of light.

¥ Spues (30

1.  Linear Polarization m

When the electric field vector oscillates in a .. ot

single plane, light is said to be linearly polarized .o~ | w |}
as shown in Fig.B.4 (a). Example is the kghi 1- ! ‘
passing through a arizing filter, like ?

sm‘mlaisaﬁ. : ey Fig. B.4 (a): Linmar polarization of ight

2.  CircularPolarization

When the electric fisld rotates circularly, either
dockwise (right-handed), or counterclockwise
{lefi-handad). the light is said to be circulardy
polarized as shown in Fig.B.4 (b). Example is the
light reflected off a CD {Compact Disc) or DVD
{Digital Viersatile Dizc).

3. Elliptical Polarization

A combination of inear and circular polarization,
where the elecinc field vector races an elliptical
path is called elliptical polarization, In elliptical
polarization as shown in Fig.8.4(c), the two
components of electric field E, and E, are not
equal andfor thay differ in phase by an arbitrary
angle 0. Example i3 the light passing through a
stress plate or a wavepale,

8.3 PRODUCTION AND DETECTION OF PLANE POLARIZED LIGHT

The light emitted by an ordinary incandescent bulb {and akso by the Sunj)is unpolarized,
bacause its {electncal) wvibrations are randomly orented in space as shown in
Fig.8.5(a).

If unpaolarized light is made incident on a shae! of polaroid (polarizer), the transmitted
light will be plane polarized. If a second sheet of polarcid iz placed in such away that the
axes of tha polaroid, shown by straight lines drawn on them are parallel (Fig. 8.5-b), the
fight is transmitted throwgh the second polarosd, If the second polarod {analyvzer) is
slowly rotated about the beam of light, as axis of rofation, the light emerging ocut of the
second polaroid gets dimmer and dimmer and dissppears when the axes become

Fig. B.4 () Eliptical pofarization of light
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mutually perpendicular as shown in
Fig. 8.5(b). The light reappears on furlher
rotation and becomes brghtest whan the
axes are again parallel o each other,

This experiment proves that light waves are
fransverse waves_ If the light waves were

longitudinal, they would never disappear
even if the twa polaroids wars mutually
perpendicular,

Ponder Upon

| Ponder Upon |
]
refaciad from ermodth suracs

water 5 padialy polarieed
paralisi iothe surace

1

Palaricd-2
{Aratyzar|

Urpotarzad
fighl bsaam

Unpatanzed

light beam

Fig. B.5:

Expenimental arrangament to show thal

ligiht wawes are fransverss. Tha lnas with
amows indicats alectic vibraions of ight waves,

8.4 POLARIZED LIGHT BY THE METHOD OF REFLECTION

In 1808, Malus discovered that polarized light is obtained when ordinary light is reflected
{lrght bouncing back from a surface) by a plane sheet of glass, If the reflectad light s
viewed through a polarcid which is slowly rotated about the line of vision, the light is

Ray Diagram
Mormal
Incident .
Wiewy th
unpoderizad HDG'EI:{?I "
light L
{prdinany light} | Refacied
A
?oo= 1w g Wibragons
el Piare patarzed ignt
Madium 1 n A o
Mediuma
Crowm glass
=152
mn xR rad
Rafractad light

Fig. B.E: Plane polarzation by reflaction
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practically extinguished al ona position of the polaroid. The most suitable angle of
incidence " is about 577 for glass for which the reflected ray becomes plane polarized,
as illustrated by ray diagram in Fig. (8.5). This proves that the Bght reflected by the glass
is practically plane polarized. Light reflectad from the surface of a table bacomas darkar
when viewed through a rotated polaroid, showing that itis parially plane polarized.

Brewster's Law

The particular angle of incidence on a fransparent medium when the reflected light is
almost plane polarized is called the polarizing angle. Let a beam of unpolarzed light be
mada incident on the surface of medium 2 as shown in Fig.8.6, If the reflectad beam of
light i almost plane polanzed, the reflected and refracted beams are at right angle fo
aach other at the polarizing angle, / =4,. Thus

6, +8 =980
or i, =490" -6,
From Snell's [aw,

SNk, = msinb, Interesting Information

maint, =asin(9d" -4, ) Lk e i e ki T
nsing =n.cos polarization of light i biological
ﬁ.‘ : % EVEIBME, SUCh &3 the polarization
sinb, _ n, ot light by cel membranes.
cosfl, n,
n
tang, = —£
% =R

Thiz eguation 1= known as Brewsters law. In this eguation, n, i refractive index of
medium 1 and n. is refractive index of medium 2. B medium 1 iz air, then eguation
bacomes tantl = i bacausa A= 1 and n,= n. Hara n s refractive index of medium on
which light is incident. Hence, Brewester proved that the fangent of the angle of
palarization is numencally equal to the refractive index of the medium 2 when medium 1
is air, In Brawstar's law, the angle 'd ' for which the reflected ray and refracted ray makes
an angle of 30" between them, is alsao called the Brewster angle i, Then tand, - nholds,

Example B.1: A baam of light strikes tha surface of a plate of glass with a refractive
index of v3 at the polarizing angle, What will be the angle of refraction of the wave of

light? ? ﬁ et

As tanty m

ar Be = fan" W3)
B, = &0°

As it g90° =@, , O =80°-60°
H-

= 30°
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8.5 MALUS'S LAW

Malus's law states that the intensity | of plane polarized light after passing through an
analyzer Is directly proportional to the square of the cosing of the angle & batween the

transmission axis of the analyzer and polanzer. Thatis; Peolarizad light
| oo’ waith e sty |,
ar

| = | cos'é
whare I, = Intansity of the
incident polarized light (after
passing through a polarizer)
Actually, Malus's law gives a
mathematical relation between e prea PO
the intensity of tha kght incidant T, I;-gh! il
on the first polaroid fi.e., I e ais of analyser
polarizer) and tha intensity of Fig. B.7 [a): Schemaic represantation of Malus's Law
light obtained after passing it
through the second polareid (i.e., analyzer). This is shownin Fig. 8.7{a). &n analyzeris
also a polarizer that is placad after a polarizer. Rofation of the analyzer affects the
intensity of tha polarized light. It is used to further reduce the intensity of ight and also
adjustit by adjusting the angle of the analyzer with respect to the polarizer,

Carlain ransparant crystallina materials, ke lourmaling, calcite crysials, slo., are
capable of confining vibrations of light waves in only one plane. Such materials are
called polaroids which have high directionality in crystal structure. Light can also be
polarized by natural phenomeana like reflection, refraction and scattering.

Il & pieca of polarcid is rolated in front of a
polarized ray of lighi, it causes a variation in the
intansity of tha light that gets through. Tha
reason that causes the variation of intensity is polarizer
the angle between the initial polarizer and the

axis of second polanizer,

When the incident polarized ight of amplitude A,
sirikes the analyzer atl an anghe o, it is resolved Fd
into two components Acosi and A sinll as
shown in Fig, 8.7(b). The componenl A sinfl is
absorbed in the analyzer. Since, only A cosd
passes through the analyzer, the amplitude A of
the transmitted lght is therefore,

A :Aﬁ_msﬂ

Since intenslty ! is the square of theamplilude 4~ Fia-8.7ib): R“':"I ution of amplfuce (nto
it can be expressed as: e i s

Initial polanzer

=lpas

Asine)
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=, 2

or | = A costd r—

NZ BT
I = lLeogs [(v1=A%) Polaraer-1 ;

_ _ ) ['veetical) =

Here [, iz the intensity of the

incident polarized light, Incicant Basm

— {Linpeodarized)
There are two sxireme conditions 1||||.

of 1 followad by the above equation

glvenas,

i. fa=0°then!={.This means
the Intensity transmitted
through the analyzer is egual
to the initial ight intensity that Light passing through crossed polanzers
passas through tha polarizer.

il. If6 =80 then [ =0. This means the kght is extinguished completely, i.e., no light is
aliowed o pass through the analyzer.

Optical Activity

Optical activity is the ability of some substances to rofate the plane of polanzation of lkght
passing through them, The rofation is detected with a polarizer or analyzer as shown in

Fig. 8.8, g Polarizrg fitar
Many crysials and solutions rotate Optically
the plane of polarization of light “‘?““‘

passing through them. Such Analyoe
substances are said to be optically
active. Examplas ara quartz crystals, /

cinnabar (H,5), sugar water, insulin
and collagen. The amount and
direction of rotation depends on

following factors: Fig. B.8. Ophical activity
(1} Thatypa of substance
iy The concentration of the substance (the

Interesting Information

Lin polarized Polarized
amount of a substance present in a given light |~u|
guantity of a mixture or solution).

(ii) Thedistance the light travels through it, and Eugﬂr scluian
(v} Thewavelength of light. Polarize Az

Beluson rotlos Bve af
Dptical activity occurs due to the asymmelric shape of wzﬂmﬂrﬂﬂ:;lwﬁ;it
- - hanzomial
m-!::l.sm.llva-s in the substance, such as hfalng holical, Afew " ‘I“‘H’LT“‘MF s lhm""'l "‘:’;
millimetre thickness of such crysials will rotate the plane light whian retated Tam e vericsl

(orms=ed) posilions
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of polarization by many degrees. Certain organic substances, such as sugar and tartaric
acld, show optical rotation when thay are in a salution. This property of optically active
substances can be used {0 determine their concentration in the solutions.

Example 8.2: Find the refractive index of a medium if polarizing angle is 54,5°

Solution:
As tand, = n F - .
or n = tané,

1. bt

[}
Example 8.3: Polarized light with an intensity of 75 W ,—%1{
m™ passes through an analyzer with its axis at 307 to the Vi
polarizer's axis. Whatis the emerging intensity ? =

e

o F':.:L“_l-‘ i
So A = tanEds i @
n = 14 ke 4

i o 4

Solution: o i o
I = T5Wm® 0=30" /=7
Lising Malus's law; u;.,k..a m.w@mu; wn.;
/ = ) cos'@ E.,..“Lﬂw i
/ = T5cos 30°
= 75(0.866)
= THX0.75
[ = BR25Wm"

Example 8.4: A polarizad light with an amplitude of 5 units passes through a polarizer
with ilg ebectric field aligned at 60° fo the orginal polarzation direction. Find the
amplitude of the wave after passing through the analizer?

Solution:
A, = bunits, 8=60"A=7
Using Malus's law:
A= Ao
ar A = Scosbl’ A beam of wnpolarized lighl passes
= Bx0.5 through & fagoy atmosphers. Tall the
pol arization state of the acattarad light.
A = 25unils

Im po rtance of Polarization
The immeansa significance of polarization of light may be justfied by various fields:
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1. Optics and Photonics

Polarization s essantial for applications like polarized sunglasses, LCD (Liguid Crystal
Display} screens, and optical communication systems.

2. Imaging and Microscopy

Polarization enhances image guality, reducing glare (unwanted light thatinterferes with
vision ) and improving conbrast, especially in microscopy and medical imaging.

3. Medical Applications

Polarization is usad in cancer diagnosis, tissue imaging, and lasar surgeary, leveraging
its ability 1o distinguish between different tissue types.

4. Astronomy

Polarization helps us to analyze cosmic phenomena, like the polarization of light from
disiant stars or the cosmic microwave background radiation,

5, Miscellaneous Fields

Polarization has importance in miscellaneous fields such as oplics and photonics,
imaging and microscopy, biology and chemistry, communication system, etc.

Two Main Applications of Polarization

Polarizars, akso known as palarizing filters, have two main applications:

1. Sky Photography

A camerawhich is usad to photograph the : :
clouds is fitted with & Mﬂﬂiﬂ. The llght Action of polanzed sunglasses
coming from the sky is polanzed by the Wavas vibrating

; prarpaned kealar
polaraid. B3 1ha highasy

In sky photography, polarizers are used o

raduce the glare and haze which are ;::';“m”m
produced by the scattering of light by highway

small particles of molecules present in the

atmosphera. Polarizers also enhance the Light baam #ﬁ,,_ﬁ

contrast by clocking the excessive bright

white light while allowing the other colours
to pass through, thus creating a brighter
detailed mage. Thus, allows o improve Podariead light
the overall image guality,

2., Stress Analysis of Materials

In materials sclance, polanzers are used 1o analyze the siress and sirain on matenals,
such as plastics, metals, and glass.

When a materal is stressed, s molecular structure changes, affecting the way, it

Unpolanzad light
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imteracts with light, and interference patterns on fringes are formed which in turn gives
gualitative information about the material. By shining polarized light through the
transparent material and analyzing the changes in the light's polarization, the
researchers can:

= datlerming the matarial's siress patlerns

s jdentify polential weaknesses or defects

= analyze the matenal's oplical properties

= understand how the matenal will behave under different conditions. This technigue
i5s known as "photoelasticity™ and is widely used in fields like engineearing.
materials science, and quality cortrol.

In both cases described above, polarizers play a crucial role in manipulating light to
achieve specific goals, whether it is enhancing image quality or analyzing material
properiies.

8.6 GRAVITATIONAL WAVES (GWs)

A gravitational wave is a siretching and compressing of
space and can be cbserved by measuring the change in
length between two objects.

Gravitational waves [GWs) are aclusally:
Alert Einsteln [1879-1855)

“Ripples in the fabric of spacetime, produced by violenl , coocan barm Thearstical
cosmic events, like colliding black holes or neutron stars Physiclsi

that traved at the speed of light, carrying information about  Cne of the Workl’s most
renewned and the most

Thmrsoos: irfluential scientists of all
The simplest example to understand GWWs is given below; Ll
If we throw a stone into a pond, the stone creates ripples on the water surface

(spacetime). These npples travel outward, carmying information about the stone (the
cosmic event). They can be detected on the shora (by gravitational wave

cbhservatories), revealing the stone’s presence and properties.

Prediction and Detection

Gravitational waves are a prediction of Einstein's theory of general relativity which is
confirmed by observations and s opening & new window inte the universa's mast
extrema phenomena.

According to Enstein's general theory of redativity, gravity is not a force, but a curvature
of spacetime caused by massive bodies. Gravity Is like a dent in a mattress, Heavy
things wrap the space around them, and that is why we feel grawvity.

Gravitational waves, as initially pradicted by Albert Einstain in 1916, are ripples in
spacelime thal were first delected in 2015, when scientists announced the first
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obsaervation of s kind: the detection of
gravitational waves, produced from two
colliding neutron stars. In this type, there is a
gradual increase in frequency and amplilude of
GWws.

A Binary System (BS) in the context of
gravitational waves refers fo "A system
consisting of two compact objects, such as
black holes, neutron stars, or white dwarfs,
which are orbiting each other and emitfing
gravitational waves,”

Four Basic Types of Gws

Thera are four basic typas of gravitational  Dr. Mergls Mavalvala bs a

waves, each with different sources and Pakislani-Amarican
characternstics: Astrophysicts al MIT known for her work

: an gravitalional wawves
1. Continuous Gws

When a single massive object spins with a constant rate, such as a neutron star,
continuous GWs are produced with the same frequency and amplitude. White dwarf
binary systems produce continuous Gws.

2, Compact Binary Inspirational Gws

When a binary system, such as binary
neutron stars, binary black holes, or a
neutron star and black hole orbiting
each other, compact inspirational
GWs are producad.,

3. Burst Gws

These are produced by vialenl events
like supermovas, gamma=ray bursts,
or cosmic stings.

4. Stochastic Gws BS Madal

Stochastic GWs are weak, random signals of GWs which are produced by superposition
of many weak gravitational wave sources, such as distant binary systems. Thesa G\Ws
are the most difficult to detect.

Evary physical object that accelerates, produces gravitational wavas. Vehicles,
girplanes, etc. are incleded in it The masses and acceleration of objects on the Earth
are too small o make gravitational waves big enough to be detected with our
instruments.
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As the binary systems (also lermad as
binaries) orbil each other, they emil
gravitational waves, which can be
detected by observatories like LIGD
(Laser Interferometer Gravilational wave
Dbservatory) which iz situated in USA and
Virgo, a large scale gravitational wave
chservatory in Cascina, laly. The waves
carry information about the system's

mass, spin, and merger dynamics,
Pichure of & seres of concentric sphems, with the

nl'fem_ng :Ir'lg:ghl-q* inta thaga axirema hinany systsm at the canter, radiating gravty waves
cosmic objects, and move with the speed  puwandinio the cosmos.

oflight.

The binary syslams are significant sources of gravitational waves, and their margers
(collision and union of two massive objects resulting mare massive single abject) are
amang the most intansa cosmic avanis,

As The massas orbil and accelerate, their
gravitational intensity fluctuates, genarating
waves that radiate outward in all directions,
These waves are not bound by the binary
system's gravity; instead, they fravel freely
through spacetime at the speed of light. The
waves propagate through the universe,
weakening in intensity as they distance
themselves from the source.

The characterstics of GWs depend on the . tances carry (he malhemalicsl signature of
system's properties, such as. grevitational waves

¢« Massesofthe objects
« Drhital panod and frequancy

 Ecceniricity of the arbil: Eccentncily  is a maasure of the amount by which an object
deviates fram a perfect circla.

g =0 Circular orbit
e =1 Parabolic trajectory
e =1 Hyperbolic trajectory

D=g =1 Elliptical arbil
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Spacetime Distortion / Tidal Forces

Gravitational waves passing
through a body with mass can cause
the body o experiance peariodic
siretching and compreszsing, also
known as "spacetime distortion”,
This effect is known as Midal forces”
gnd is a result of the gravitational

wave's oscillating nature, As the
gravitational wave passes through Spacaetime curve of an artificlal and a natural satallite

the body, # causes the spacetime around the body to ascillate, leading 1o a perodic
stretching and compressing of the body in the direction perpendicular to the wave's
propagation. This effect is similar to how the fides on Earth are caused by the
gravitational pull of the Moon and Sun,

The amount of strefching and compressing depends on the strength of the gravitational
wave, a5 well as the mass and size of the body, This aflect is an impoerant prediclion of
Einstein's theory of general relativity.

Gravitational waves generated by
far off calestial avents, such as the
merger of two black holes or
neutron stars, pass through the
Earth. However, the amplitude of
these waves is extremely small,
typically of the order of 107 lo
10-" metres. This means that the Spacelime curve Shown by two sabelites
distortion causad by the gravitational wave is incredibly tiny, and raquiras axtramely
sansitive instruments o detect.

Despite their small amplitede, gravitational waves offer a unique window into
the univarse, allowing us (o siudy strong-field gravity, test general ralativity, and
explore the universe inways previously impossible.

8.7 INTERFEROMETER

An interferometer is an opfical tool used in detecting gravitational waves. It is a very
sensitive deteclion device that may use the interference of LASER (Light Amplification
by Stimulated Emission of Radiatoin) beams. The basic Michelson's interferometar can
beseeninFig, 8.4,

An interferometer that detects gravitational waves is a highly sensitive instrument that
uses LASER light to measure tiny changes in distance befween mirrors, caused by
gravitational waves passing through the detectors. These interferometers are called
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LIGD  [LASER  Interferometer g .- \
Gravitational Wave Observatory).
The main differences between LIGO

and conventional interferometars
ara:

(a) LIGD is 1000 times larger than
conventional davice, and
Input

(b) LIGD uses LASER whereas puue  mirer
econventional intarferomeatar ﬁrﬂ"ﬂ H—“"'_ / Fabry-Feral canily
has normal light source. H i 1
Basic Components of %ﬁ 0 < lr_. . *

GW Interferometer I = - Eni

}Fatr:.l--P:mL cawily

Tha basic componernts of a
gravitational wave interferometer
are: Flg. 6.9: Basle Michelson's Interferometer
1. Laser thatproduces a stable and high Intensity beam of light.

2. Power recycling mirror continually reflacts LASER light that has akready travelled
through the instrument back into the interferometer and hence the term racycling is
used.

3. Beam splitter divides the LASER baam into two parpandicular beams.
4, Mirrors reflect the beams, creating two perpendicular amms.

5. Fabry Perot cavity consisis of two mirrors facing sach other, The purpose of the
cavity is to enhance the pathilength.

6. Photodetectors measure the returning baams, detecting tiny phasea shifts (if any).
7. Armcavities enhance the LASER light, increaszing sensitivity.
Working of Interferometer

A laser beam is split into two perpendicular beams, each ravelling down fwo identical
paths (arms) of the interferometer. The beams bounce off mirrors at the ends of each
arm and raturm 1o the stading point, whare they are recombined. Il a gravitational wave
passes through, it causes g tiny disturbance in the distance between the mirmors,
resulfing in a phase shift between the bwo beams,

When the beams recombing, they create an interference pattern, which iz measured by
a photodetector, The finy phase shift caused by the gravitational wave alters the
interferance pattern, allowing the detacior to sense tha wave's presenca,

Figure 8.9 is a simplest figure of an inferferometer, but in reality, # is much more
complax, On 14 Septamber 2015, the univarsa's gravitational wavas wera observed for
the very first time by LIGO. The gravitational waves which were predicted by Albert

*;" Priain detasor
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Einstein 100 years ago, came from a callision betwaan two black holes, Ittook 1.3 billion
years for the waves to arrive al the LIGO detector in the USA, On their work on
ohservation of GWs, Rainer Weiss, Barry . Barisk and Kip 5, Throne received noble
prize in 2017, ILis intaresting to note thal one of the leam mambers, Nergis Mavalvala a
professor at MIT (Massachusetits Institute of Technology), belongs to Pakistan.

Virgo Detection

Similar to LIGO, there is another faclity for measuring gravitational waves. This iz called
Wirga, which works under the European Gravitational Obsarvatory (EGO) Cascina near
Piza, ltaly. Virgo is alzo an interferometer with two arms of 3 km whereas LIGO has 4 km
arms. The Virgo Observatory is named after the Virgo constellation, which is visible in
the night sky during the months of March, April and May. The Virgo cluster is a group of
about 1,500 galaxies about 50 mLYs (Million Light Years) away. Remember one Light
Year (LY) is a distance which Bight travels in one year. The approximate wvalue of
1LY =59.5 bilion km, Virgo has been involved in detacting gravitational wave evants, with
the first detection in 2017,

Example 8.5: If the gravitational waves have a wavelangth of 4000 km, find their

frequency.
Solution: . =4000km =4 =10"m , c=3x10Pmsa", f=7
A v o= i
[y
ar =g
% { )
;= 3A0°ms
4x10°m
f = 0.75x10%%"
f = 75H=z

waves with a frequency of 107 Hz. What is the
wavelength of these waves?

Solution: f = 10'Hz=10"3", ¢ =3x10"ms', A =7

Example 8.6: A binary system amits gravitational
I

Az =
or L= ]E: (-w=g)
i = 3x10ms'
107 8" it s Finges in ¥ Madmisns

misroromaior

A o= 3x10°m
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] Multiple Choice Questions E

Choosa the correct optlon.
8.1 The phenomeanon of polarization oflight is:
{a}the process of scattering oflight
{b}the property of light lo vibrate in a specific plane
{c])the ability of light to fravelin a straight ine
{d}tha phenomenan of light changing colour
8.2 Malus's law siates that:
{a} the intensity of light is directly proportional to the square of the cosing of the
angle batwean the light wave and the analyzer
{b} the intensity of light is directly proportional 1o the square of the sine of the angla
betweenthe light wave and the analyzer
{c) the intensity of light is directly proportional to the angle betwaen the lght wave

and the analyzer
{d} the intensity of ight is inversely propartional to the angle between the light wave
and the analyzer
8.3 Thaintensity of light when it passes through a polanizer:
{a}increases (b)decreasas
{clremains the same id) becomes 2erm
8.4 The angle batwaan the light wave and ha analyzer s called:
a) palarzation angle {b)refraction angle
b) reflaction angle idyazimuth angle
8.5 Thekey purpose of ananalyzerin a polarization axparmant is:
(&} to polarize the light {b) to measure the intensity of light

() to change tha direction aflight (d) 1o filler out unwantad light
8.6 The mathematical representation of Malus's law is.
{a)/=] cos"B (b= sin"B
{e)l=1tan’f {dyl=/ cot’d
8.7 The effect of increasing the angle between the Eght wave and the analyzer on the
intensity oflight is:
{a)the intansity Increases (b) tha intansity decreases
(c) the intensity remains the same{d) the intensity becomes zero
8.8 The condition for maximum intensity of ight In a polanzation expariment |z whan;
{a} the kghtwave and analyzer are perpendicular
(b} the light wave and analyzer are parallel
{e) tha kghtwave and analyzer are atan angle of 45°
{d} the Eghtwave and analyzer are atan angle of 60°




8.9

The unwanted fight that intareres with vision is termed as;

(a) haze {b)alara (c) contrast {d) flara
8.10 Who predicted the existence of gravitational waves?

(a) Galileo Gallei (b)Albert Einstain

(c}szac Newlon id) Leonardo daVenci

8.1 Whal are gravilabional wavesT

(a) Electromagnetic waves (b} Mechanical Waves
o] Ocean waves (d) Ripples in the fabric of spacetime

8.12 Which is the primary mathod used 1o detact gravitational waves?

(a) Opticaltelescopes (byRadiotelescopes
ic) LASER interferaometry {d) Gravitational lensing

8.13 Which of the following is a primary source of gravilational waves?

8.1
8.2
8.3
8.4
8.5

8.1
8.2

8.3

8.4

8.5
8.6

8.1

8.2
8.3
8.4

ia) Binary black hole merger (b)) Solar flares
(c] Earthguack {d} Supernovae

[] Short Answer Questions [ ]

Why are the polaroid sunglasses better than the ordinary sunglasses?
Islight from the sky partially polarized? How is it 507

How is Malus's law usedin everyday life 7

What are the applications of Brewster's angle?

What is the space-time curvature?

| Censtructed Response Questions |

Write down some applications of plane polarized and circularty polarized light.
Would it be possible to use a polarizer as an analyzer? If yes, give al least two
examplas.

Explain how Malus®s law is used in the design of polarized sunglasses. How do

these surfaces reduce glare from reflective surface? Provide an example fo
iliustrate your answer.

How will the sky appear if there had been no atmosphere?
What is the significance of detecting gravilational waves?
How are tidal forces formed ?

|@§ Comprehensive Questions |
Define the phenomenon of polarization of waves. How does polarization of
electromagnelic waves occur? Also classify the polanzation of waves.
How can the plane polarized light be produced and detected? What does it prove?
Haw can polarized light be oblained by the mathod of reflection? Explain,
State Malus's law, Explain the imtensity formula,




_,;hm,,,@ Piiical Optics.and Gravitasional Weves |.

8.9
8.6
8.7
8.8

8.1

8.2

8.3

8.4

8.5

8.6

H.7

8.8

8.4

What is & polaroid? Explain fwo main applications of polarization.

What are gravitational waves? Describe the basic tvpes of gravitational waves.
What is an interferometer? Describe the hasic Michelson's interferometar in detail.
What is meant by optical activity? Discuss it.

@ Numerical Problems |

Wi'hen an unpolarized light of intensity [ is incdant on a polarizing sheet, find the

intensity of light which does not get transmittad., tAns é )

A polarized light beam passes through a polarizer at an angle of 45°. Find the
imtensity of the tfransmitted kght if the initial intensity is 100Wm™, (Ans: 50 Wm™)
A light wave passes through a polarizer with its electric field aligned at 30° to the
horizontal. if the amplitude of the wave is 10 units, what is the amplitude of the
wave passing through the polarizer? {Ans: B.66 units)
What angle is required between the direction of polaroid light and the axis of a
polarcid filter to reduce its intensity by B5%:7 LAns: 57 .57
An unpolarized light having intensity of 15 W m™ ks incident on a pair of polarizers.
The first polaroid filker has its transmission axis at 507 from the verical. The second
polaroid fiter has its transmission axis at 20° from the vertical. Calculate the
intansity oflight transmitted to both filters.. (Ans. 7.5 Wm”™, 5.6Wm™ respactivaly)
Twa palanzing sheets have their polarizing directions paralkel 50 that intensity of
emittad light s maximum. Through what angle must aither shaet ba rotated If the
imtensity is to be dropped by half? tAns 45"}
We wish lo use a glass plate of refractive index af 1.5 in air as a polarizer. Find the
polarizing angle and angle of refraction. tAns; 56.3°, 33.7 respectivaly)
At what angle of incidence, will light reflecled from waler be completely polarized?
{Ana; 537
A beam of unpolarized light is incident an a stack of four polarizing sheels that are
lined up so that the characteristic direction of each is rotated by 30" clockwise with

respect fo the preceding sheet. What fraction in percentage of the incident
intansity be transmilted? (Ans: 21%)

8.10A polarizer and an analyzer have their axes aligned at 60°. What is the fraction of

the initial intensity that emarges? (Ans: 0,25)

8.11 i the gravitational waves have a wavelength of 3000 km, then find their frequency

assuming it moves with the speed of light? iAns: 100 Hz)




At the end of this chapter the student will be able to:

%+ [Define ard calcufate electne fishd strength. AV
[Usm F=gE for the faree on a chargs inan eleciic fisld, Use E=— iocalkulale the fisld sirenglh
af the uniform Reld between charged paralis plates) Ad

+ Describa tha effect of a unitorm alacne field on the motion of charged particies.

% State that, for a point culside a sphencal condyctor, the charge on the sphere may be considared io
b it charg eal 15 cendre,

4 Explain how a Faraday cageworks.
[y inducing infemial eleciric finlds that work to shisid tha inside from the influsnce of sxiemal electric
Fialis)

+ State and apply Coulomib's law.

' 1
F=#q—;a% for th forme betwaren wa point charges v free space, whare K= |

Use E=k§1— forthe electne fiald strangth die toa point chargain free space.

Use, for a currend-carmyng conductor, Bhe expresskon | = Anvg, fwhere o s fhe number of charge
CAFIars per und voleme]

State and use V= W0,

Slalpand use P=I P="Rand P=¥¥R,

Stateanduse B = n%

Siate thal the resislance of & lighi dependent mesistor (LDR) decregses &s the Bght Intansity
increasas,

Stake KirchhofP s first law and descrne thal itis a consequence of conasrsadion of change,

State Kinchhalls sacond v and dasaribe (hat il i 8 tonssquente of consarsalion ol anergy. .

Use Kirchhalfs e b salve almgpla clreult probiams,

State and ussa the principle of the petentiomatar &3 a means of comipanng poteniial diferancas,
Explain tha usa of a gabvanomater in null methods,

Explain ths uee of thesmistors and lighl-dependant reslstors In potential dhaders.

[l provide a poiential diffarence that is depandent oo emperature and ight intensiy]
Expriain thar informial resistance of sources and 135 corspquences for axbemal circulbs,

Expiain Mo inspacion can easily check i reliabilily of 3 concrebe bridoe wilh ciibon ires 3% the
firres conduct electrzily,

Oy ofp oy feme Ay R e Wy L

Lo

We know that magnitude of the charge on an electron is equal to that of a proton. The
charge on a proton s e’ and thal on anelectronis ™ s value is; e = 1.8x 107" C whara C
is the Sl unit coulomb of the charge. This charge (e is the smallest amount of free charge
that has been discovered, Charges of larger magnitude are built up on an object by
adding or remaving electrons, It is the minimum amount of charge that any particle may
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contain. Thus, any amount of charge gis an integer multiple of &, |.8.,
g=HNe whera N Is an integer

Elecirostatics is the study of phenomena and properigs of electnc chamges at rest.
When charges are in mofion, we callit as an electric current.

Charies de Coulomb (17 36-1806)

Coulomb's meor confribution to scence was in the feld of elecirostatics and
magnatisme During his Wletime, be alse investgatad the strengihs of matera and
determined the forcas that afect on beams, thareby, contributing ta the fiekd of stiruchral
machanics. |n the fiald of ergonomics, his ressarch provided & undamanial
undersianciing of he waysin whirch [rnnpll:nd:nirrnl:an besi dowork.

9.1 COULOMB'S LAW

Coubomb’s law s a fundamental principle o e % T g,
electrostatics that quantifies the forca between two  <—{) O—»
charged objects. The first measurement of the force . PRI SRS

betwean electric chargas was made by a French
Fhysicist Chares de Coulomb in 1874, Coulomb's law is
essential in understanding the behaviour of charged - ("'J_,.. P
particlas and tha interactions that govern many electrical
phenomena. On the basis of these measurements, he
deduced a law known as Coulomb's law. It states that: Fig. 3.1

The force between two-point charges is directly (s Repulsive forces betwean like
proportional to the product of the magnitudes of charges  charges and
and inversely proportional to the square of the distance (1) sttractive forces hehwesn

betwean them. It is mathematically expressad as unlike charges.
qur—'?:"- ar F=k%€ ............ (8.1}

where Fis the magnitude of the mutual force that acls on each of the two point charges
.. . and ris the distance betwean them. The force F always acts along the line joining
the wo point charges (Fig. 12.1), k is the constant of proportionality, lis value depends
upon the nature of medium between the two charges and system of units in which F g
and rare maasured. If the medium between the two point charges is free space and the
syztem of unitz is S1, then kis represented as

k= TT;:T
where i, is an electrical constant, known as permittivity of free space In 5l units, its value
is8A5x107 C'N' m. Substituting the value of £, the constant

k=-1_ - ax10°NmC*

dne, Paimt to paner!
Thus, Coulomb's force in free space s Does an alecknstatic fomee
9 exist bebassn a2 chargad
= + oy E;.ES- PR 1 5 and &n uncharged?
o
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As stated earlier, Coulombs' force is mutual force, it means that if g, exerts a force on q,
then g, also exerts an equal and opposite force on ¢ . we denote the force exerted on q,
by g, asF, and thatoncharge q, dueloq,asF, then

Fou® ooy rereeeneesmessemsrmsrses {9.4)

The magnitude of bath thaze twa forees is the same and mﬁlumhy En.9.3. Tareprasant
the direction of these forces, we infroduce unit vectors. If r, |, is the unit vector directed

fram g, to g, and r,, is the unit vector directed from g, to g, then Fu
1 &% . u.-g/ ,
B = e~ T (98) P f";
Fim ot BBo . o i (@.5) FL
*= Fng, ¢ s
o
L
Theforces F, and F are shownin Fig. 12.2 (a&b). ltcanbe ¥ o
seanthatr, =-r,;, s0Eqs. 12.5(a &b} show that Fﬁ
F - _F L] K
i ]
The sign of the charges in Egs. 12.5 (a & b) determine >
whather the forces are aliraclive or repulsive. ll__; ;..:
We shall now consider the effect of medium between the two Material b
charges upon the Coulomb's forca. If the medium is an  Macuum 1
insulator, itis usually referred as dislectric. It has been found  Alr {atm) 1.000E
that the presence of a dielectric always reduces the mﬁ{“‘”m 2:'12:
elecirostatic force as comparad with thal in free space by a Banmt:a - ,;M
cerain factar which is a constant for the given dislectric, This B et e I1E
constant is known as relative parmltllml'_-.r and Is represented  mi5ee Mics AE-10
by «. The valuas of relative permittivity of differant diebectrics  parafined paper | 3-7.5
are given in Table 12.1. Plasiglass 2
Thus, the Coulomb's force in a madium of retative parmittivity i g‘ﬁ
& s given by Transformer oll 2.1
1 99 Water (distillad) 2.4
Fi= e o (9.7} 78.5

i can be sean In tha tabk that s, for air 51,0006, This value is so cose 1o one that with
negligible error, the Eq. 12,2 gives the eectric force in air, 0 s

Example 3.1: Three point charges q,, g, and g, are lying in
the same plane as shown in Fig, 9.2{a). Find the magnitude
and direction of the net fore actingon g.,.

Solution:

Force on g, exerted by g, is attractive. Let it be F_. i3
magnitude is given by Fig 9.2(2)
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r (.15 my*
Force on g, exerted by g, is also attractive. Let itbe F,,. s magnitude i given by

Eik 9,9, _(9=10°Nm’ C7H40=10°CH50=10"°C) _

=1260 N i___

¢ (0.12 ') i

Tofind the resultant of F,, and F,,, let us make free-body diagram, % £
resolving F, intoits rectangular componenis, we have =

Fow=F,00860°= 1250 N2 0.5 = 625N 1A e

Fip =F,8IN60° = 1250 N x 0.86 = 1075 N F.eosbl®  F,
The x-component of resultant F is ¥ Fig 8.2h)

F. = F,; + F,,c0s80"
F.=960N +625N
F, = 1585 N
y-component of F is;
F.=F;sinB0" =1075N

A Van de Graaff generalor is an skecirostalic generator which
USEs a moving bel 10 accumulale secirc change on a hollow
metal ghole onthe iop of an insulated column, creating wery bigh
voliage dirsct currend (CR5) o low currend levels, || was imaenhed
by Amarican physicl st Robert ). Wan de Graffin 1029,

The polential diference @chieved in modern Van de GraafT
genarators can resch & megevolis. A teblatop verston can
mmanmmm1mmmumanmmnhmemm

Magnitude of F is given by o I vl S .
_ JFTLFf _qgysN Mpulley dives aninsulling bel by 3 sharply pointed mital comb
r r which has bean ghven 8 positive charge by & power supply,
. Electrons are removed frorm the ball, leaving it posi
For direction of F: ety oyt il ol il S s u{tﬁ
.f—; 1075 {0 spreadiothe dome,
tanf =— =—— =0,68 Why do tha hairs tt when VAN DE GRAAFF GENERATOR ig
£ 1585 touched?

Therefore, @ = 34° with with the line jeining g: and g
9.2 ELECTRIC FIELD STRENGTH

electrostatic force in the presence of other charges. Lat

us consider a positively changed object O. If we place a

We have learnt that a charge experiences an r

small charge +g at point A, it will experiance an -
electrosiatic force F due to the charged body O, Thus, an T

electric field iz said fo exist at point A, Coulomb's law ,a-;f
suggests that the fiekd gets stronger as the point A gets (#3149

+
closerto O as representad in Fig. 9.3, The strength of the ““1-5;
field at a position is khown a2 its intensity at that point. Fig. 8.3

The electric intensity of the field or simply electric field at any point is defined
as the force experienced by a unit positive charge placed at that point.

Electric intensity is a force, so itis a vector quantity and is usually denoted by E, It can be

obiained by the relation:




M
-ﬂ- F -

E-L Fanean{R)

From Eg, 8.5, the unit of electric intensity is newton per coulomb N C”', The direction of E
i the same asthat of F. The Eq. 9.5 can alzc be written as:

F=gE .......cco0cevrrnnnn SN X |
Example 9.2; Two positive point charges g, = 16.0 pC )
and g, = 4.0 uC are separated by a distance of 3.0 m, as |‘""|
shown in Fig.9.4. Find the spot on the line joiming the two 7 {3—;—@*%
charges where electric field is zern, Tt f'
m
Solution: Fig. 9.4

Between the two charges, the fields contributed by them have opposite directions. and
electric field would ba zaro at a point P, whera the magnitude of E, aquals ta E,. In Fig.
9.4, letthe distance of P from g. be d. At £ E, = E, which implies that:

1 q, _ 1 g
drg, (3.0-0)°  dwg, o
16.0 x10°C _ 4.0=107°C
8.0+ a*— 6d o
or d* + 2d — 3 = 0, whichgives d =+1m.-3m

There are two values of d, the negative value corresponds to & location off to the right of
both the charges where magnitudes of E, and E, are eqgual but directions are same. In

this case E, and E, do nol cancel al this spol, The positive value cormesponds o the
location shown in ihe figure and is the zero filed |ocation, hence, o =+1.0m.

Example 9.3: A proton experences an electrostatic force equal to lts welght at a
particular paint in an electric field, What is the field intensity at that point?

Mass of proton = 1.67 x 107" kg and charge, e = 1.6x 107" C

Solution:

Uszing .'E=£=ﬁ
q @

Substituting the values,

_167 107 kgx9.8ms”
1.6 %107 C

ar

E =1.0x10"NC”

Electric Field Lines

Avisual representation of the electric field can ba oblained in ferms of electric field lines,
an idea proposed by Michael Faraday. Electnic field lines can be considered as a visual
magp used to represent the direction and strength of an electric field around a charged
ohject. As electric field lines provide information about the electric force exered on a
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charged object, these lines are commaonly called “electnc linas of force”,

To infroduce electnic field
lines, we place positive
lest chargas +q, each of
magnitude g, al diferent
places but at equal
distances from a positive
charge +g as shown in
the Fig. 2.5. Each lest
charge will experience a
repulsive  force, as
indicatad by arrows in
Fig. 9.5(a). Therefore,
the electric field created
by the charge +g is

-I-E::)*fr- &

w
- ® 3
Yo, 4 ;

£nl il

Figa.s
(51 A potitive test charge +g, placed anywhesa in s yiceity of 3

directed radially outward, positive point chare +f expenantes & rmpulaive force directed
Figure 9.5(b) shows . racfally outward,

ponding field lines (=) The slaciric Beld inas are diecied radially oubward from e
Zarrs J positive point chargs +q.

which show the field
direction. Figura 9.6 shows the electric field lines in the
vicinity of a negative charge =g7. In this case the lines are
directed radially "inward”, because the force on a positive
test charge is now of atfraction, indicating the electric field
points inward.

Figures 9.5 and 9,6 represent two dimensional piciures of
the field ines. However, electnc fisld lines emerge from
the charges in three dimensions, and an infinite number of
lines could be drawn,

The electric field ines "map” also provides information
ahout the strangth of the alectne field. As we notice in
Figs. 9.5 and 9.5 that field lines are closer to each other
near the charges where the field is strong while they
continuously spread out indicating a continuous
decrease in the field strength.

The number of lines per unit area passing

perpendicularly through it is proportional to the
magnitude of the electric field.

The alectrdc fiald linas are curvad in case of two identical

Flg 0.8: The sdsctic fiadd nes add
dircsad radially imeard towans a
mgariee poind charge =)

separated charges. Figure 9.7 shows the pattern of lines  Fig8.7: The eleciric Beld lines
associated with two identical positive point charges of f;'m“‘“ identicsl opposite point

TS
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equal magnitude. It reveals that the lines in the region . W 3
between wo like charges seem o repel each other. The "
behaviour of two identical negatively charges will be i

exacily the same, The middle region shows the prasance

of a zero field spot or neutral zone.

Figure 9.8 shows the electric field pattern of two opposite

charges of equal magnitudes. The field lines start from - %
positive charge and end on a negative charge. The : -.

eleciric field at points such as 1, Z, 3 is the resultant of i
fields created by the two chargas at these points, The Fia9.B: The aleciric feld lines are

direcied redally (msrd towands @

directions of the resultant intensities is given by the pagative point change -4

langents drawn to the field ines at thase points.

In the regions where the field lines are parallel and
equally spaced, the same number of lines pass per
unit araa and therefore, field s uniform on all points,
Figure 9.9 shows the field lines between the plates of a
parallel plate capacitor, The field is uniform in the
middle regicn where field linas are equally spaced.

Wa are now ina position to summarize the properties of
electric field linas,

1. Eleciric field fines originate from positive charges
and end on negative charges.

2. The tangent to a field line at any point gives the
direction of the electric field atthat poinl,

3. Thelines are closer where the field is strong and the
lines are farther apart where the field |z weak.

4. MNotwolines crmss each other, This is becausae E has
only one direction at any given point. If the lines
cross E could have mare than onea direction.

8.3 ELECTRIC FLUX

When we place an element of area in an electric fiekd,
some of the lines of force pass through TiFig, 9,10}, Tha
number of the field lines passing through 2 cerdain
element of area iz known as electric fiux through that
area. It Is usually dencted by Greek leller 4, For
example, the electric flux «, through the area A in
Fig9.10 s 4 while the flux through B is 2.

In order to give a quaniitative meaning to flux, the field

5P 1 -

Fig.B.9: In the central fegion of &
paralied plate capaciion, the ek
fighd lines are parslied-and avanly
spaced, indicating that the ebkeaolric
fiekd there has The same mapniuds
and direction al poinis.

There = na electic fleld
Inside the conduchor.

Fig8.10: Electic flux through a8
surfaca noimal i E,
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lines are drawn such that the number of field lines - BT
passing thraugh a unit area hald parpendicular to fiald

lines &t a point represent the intensity E ofthe fieldat —™ - g
that point. . 8

Usually, the element of srea is represented by a
vector area A whose magnitude is equal to the ———™ o
surface area A of the element and whose diraction is

along nomal tothe area,

In Fig.9.11 {a}, area A is held perpendicular to the field Fin¥: sk Maxdmum

lines, ihen EAlines pass through it. The flux ¢, in this
case s

S =EA e (9.7)

In Figure 9,11 (B), area A is held paraliel to field lines
and, as s obvious no ines cross this area, so that flux
4, Inthis case is:

Y o B DR (9.8)

Figure 9.11(c) shows the case when A is neither
perpendicular nor paralel to field lines but is inclined
at an angle O with the fizld E. In this case, we have to
find the projaction of the area which is perpendicular
to the field lines. The area of this projection
{Fig. 8.11=c) is A cosl. The flux ¢, in this casa is:

0, =EACDSE ....oereieene 9.9}

The electric flux ¢, through a patch of flat surface in
terrms of E and A s then given by

$,= EAcosB =EA...........(8.10)

whare 8 15 the angle batween the figld ines and the
narmal to the area. Electric flux being & scalar product,
is & scalar quantity. ts SlunitisNm® C™.

Electric Flux Through a Surface
Enclosing a Charge

Lel us calculate the electric flux through a closed
surface, in shape of a sphere of radius r due to a point
charge g placed at the centre of sphere as shown in
Fig. 9.12. To apply tha formula ¢, = E.A for the Fig.9.12: The total alactric Aux
computation of electric flux, the surface area should  threugh the surface of the sphers
be flat, For this reason the total surface area of tha W80 achenge qatits centre s gf..

Tm
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sphere is divided into n small patches with areas of magnitudes A4, A4, Al :
AA, respectively as shawn in Fig. 9.12. The direction of each vector area is along
perpendicular drawn outward to the cormesponding patch. The electric intensities at the
coentres of vactor areas AR, ARy, A, ... AR Bre B, By By, e, B respectively.

According to Eq, 9,10, the total flux passing through the closed surface is:
D uE AA4EAAFE AAF. ..o PE AR e {9.11}
The direction of electric intensity and vector area is the same at each paleh. Moraover,
EfeE=1=R v

B)= (B [E = .

Since E is parallel to vector araa A, therafora, 8= 0° |
so for each E.AA = EAcosi
=EAcos0*=EA (v cos0°=1)

§, = EAA +EAA +EAA + .. +EAA,
=E [(AA+AA+AA +.......... +AA)
= E (Total spherical surface area)

i X G
progy dnr
e e (9.13)

Now Imagine that a dosed surface Sis enclosing this g0 g 45

sphere. It can be seen in Fig 9.13 that the fiux through

the closed surfaca S is the same as that through the sphere. So, we can conclude that
lotal fiux thraugh a closad surface doas not depend upon the shapa or geomaetry of the
closed suface, H depends upen the medium and the charge endosed,

9.4 GAUSS'S LAW

Suppose point charges §. 95 Ge-oveeenn g, ara arbitrarily
distributed within an arbitrarily shaped closed surface, as shown
in Fig. 9.14. Since ¢,= q'c.. s0 the electnc flux passing through
the closed surface is!

o, =i+q_E+E§.+ __________ I'q—|I|
B, B B £y
o ..E'l-x:q1+q21qa+ .............. +q,)

4, = % = | Total charge enclosed by closed surface) Fig: 9.14 -

=i
§, =5 %0 . {9.14)
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where Q =g, 4 0, ¥ 05 *iverinianen +q.. i the lotal charge enclosed by dosad surface,
Equation 3,14 s mathamatcal expression of Gauss's law which can be siated as:

The total electric flux through any closed surface is 1%, times the total charge
enclosed init

Applications of Gauss's Law

Gauss's law can be applied to calculate the electric intensity due to differant charga
configurations. In all such cases, an imaginary cosed surface is considered which
passes through the point at which the electric intensity is to be evaluated. This closed
surface is known as Gaussian surface. Its chaoice s such that the fiux through it can be
easily evaluatad.

As an examphe, let us find the electdc field at any point outzide a sphere on which a
charge qis placed.

The Field of a Charged Conducting Sphere

Consider a conducting sphere of radius R containing & charge g. We know that
all the charge is distributed uniformby over the surface of sphere as shown in
Fig. 8,15, We can also conclude from the spherical symmetry that the aleclrc field is
radial everywhere and that its magnitude depends only on the distance r from the centra
of the sphera. Thus, the magnitude E is uniform over a spherical surface with.any radius r
cancantric with the sphearical conductar, Therafore, we lake our Gaussian surface as an
imaginary sphere with radius rgreater than the radius R of the conducting sphere.

The area of the Gaussian sphere is 4n¢, and
because E is uniform over the sphere, the
total flux through the whole surface will be:

Elactric flux h, =EA=Ex=dnrt
By Gauss's law,
Total flux b, = %

Therefore Exdzr= %

g 1
e =9
ar E. dnr®
= q
E =w—l_x3
o arg. P

This shows that the field at any point outzide the sphere is the same as though the entire
charge wera concentrated alits cantre, Jusl outside of the sphare, wherer=FR, i.g,,

In vactor form; ge-_1_9; where T is the direction of E.
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9.5 ELECTRIC POTENTIAL

Figure 8,16 shows wo opposilely charged parallel “T] *1 ] 31 4] 41 3
Plated which produce a uniform electric fisld,

Let us congidar a positive charga g which ks allowed 1o
move in this uniform electnc fisld, Tha positive charge
will move from plate B to A and will gain K.E. If it is o be
moved from Ato B, an external force s neaded to makea
the charge move against the elactnc fisld and will gain
FPE. Let us impose a condition that as the charge is
moved from A to B, it is moved keeping electrostatic A ' ¥
equilibrium, i.e., § moves with uniform velocify, This Flg: 8,98

condition could be achieved by applying a force F equal and opposite to gE at every
point along its path. The work done by the external force against the electric field
increases alactrcal potential enargy of the charge that is moved,

Let W, be the work done by the force in camying the positive charge g from A to B while
keaping the charga in aguilibrium. The changa in its potential anargy AL= W,

or e DT A N P (9.18)

whare U, and (L, are defined to be the potential energies al poinis Aand B, respactivaly,

To describe electric field, we infroduce the idea of electric potential differance, The
potential difference between two points Aand B in an electric fiekd is defined as the work
done in carrying a unil positive charge from A 1o B while keeping the charge in

flibrium, i.a.,
s _—

au.u;-v“-m&m.--&n ........... {917

=

*ﬁ.

whare V, and V, are defined as eleciric polentials at
points A and B respectivaly. Electric potential enemy
difference and electric potential diference between
the points Aand B are redaled as:

An ECG records the “voltage®
AUEGAY o imermsrmnerneanine |3, 18)  DEIWEEN pdints on human skin
generated by electreal process in the

Thus, the potential diference betwaen the two points  hearl This. ECG & made in running

can be defined as the difference of the potential BOEMIan pravidng infarmaben about

energy perunit charge.

As the unitof FE. is jouls, Eq. 9,17 shows that the unit of potential difference is joule par
coulomb. tis called volt such that,

_ 1 joule
fvalt = T S e T
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That iz, a potential diference of 1 voll exists between twao points if work done in moving a
1 coulomb positive charge from one point to the other, keeping equilibrium, 1s one jouls,
In order to give a concept of electric potential at a pointin an | Point to po ﬂﬁiﬁ
electric field, wa must have a referance lo which we assign w.-.ll - i % -d 'b :
zero electric potential. This point is usually taken at infinity. 0t 0 T
Thug, in Eq. 9.17, ifwe take point & to be at infinity and choose  hendling elactric appliances?

V=0, the electric potential at B will be \, = % - Generally,

e B e ()

q
which states that the electnc potential at any point in an electric fiedd is equal to the work
done in bringing a unit positive charge from infinity to that point keeping 1 in equilibrium.
30, the potential at a point is always relative to potential at infinity. Both potential and
potential diferences ara scalar quantities because both Wand g are scalars.

Electric Field as Potential Gradient

In this section, we will establizh a relation between electrc inbensity and potential
differance, Lat us consider the situation shown in Fig. 518, The electic field between
the two charged plates is uniform and its value is E. The potential difference between A
and B is given by the equation.

v-v,=a (8.21) ELG/Hosmel phriyiting

where W, = Fd = -gEd (the negative sign  poransias

is needed because F must be applied Differance
opposite to gE so0 as to keep it in
equilibrium ). With this, Eq. 9.21 becomes:

v, -V, ="TE"'= —Ed

d d

i the plates A and B are separated by .. .
infinitesimally small distance Ad, the piferance
Eq. 9.22 s modified as:

PRt ot S (9.22) I ECG [Abnormal)

AV
E=__ ______________________________ 923 __4%’-—"\-_-——-—#—‘-\-——-&—"—"-
e {9.23)
The quantity AV S Ad gives the maximum TiMg ——————

value of the rate of change of potential in

- slecimancephalography the potantial deference
with distance because the chame Nas ceated by the slectrical setivity of the brain are usesd
been moved along a field line inwhich thie o disgnosing ataormal behavicr,
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distance Ad batween the two plates is mindmum. it iz known as potential gradient. Thus,
the electric intensity is egual o the negalive of the gradient of potential, The negative
sign indicates that the direction of E is along the decreasing potential,

The unit of electric intensity from Eq.9.23 is volt/metre (V m™) which is equallo N C' as
given below:
volt _, jouleicoulomb _, newton=metre _, newton

, [ | Rt e iR i =1
metre meire malre = coulomb  coulomb

Example 9.4: Two parallal metal plates are 1.0 cm aparl. These are connected to a
battery of 12 volis, Find the magnitude of elecinc field intensity between them,
Solution:

Here, AV=12V, Ad=1.0cm=1x10"m,E=?

=1NC"

Usingthe aquation g- ﬂ
Ad
Substituting the values,
12V i -1
= =1200% m" {or N C
1«10 m { ]

Example 9.5: Twa horlzontal parallel metal plates are connected to a 12 volt batteny,
An electron is released from the negative plate. Determine its velocity as it reaches the
positive plate. Mass of electron=9.1x 10" kgand charge = g =e=1.6x 107" C,
Solution:

The electron is repelled by the negative plate and altracled by the positive plate. It will

be acceleraled towards positive plate. Therefore, s EE will be lost that will be
convarted intoits K.E.

Lossof PE=Gainin ICE
AV % B =% mv?
Submitting the values,
12Vx16x16"C=Tx a1 x 10" kg% v
vi 242w 10%m &
ar v =24 =10"mg’
9.6 ELECTRON VOLT

We know that when a particle of charge g moves from point A at potential V, to a point B
at potential V, keeping electrostatic equilibrium, the change in potential energy AU of
paricle is:

AU =iV, -V =gaVi o (92)
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If no external force acis on the charge to maintain equilibrivm, this change in B E.
appears in the form of change in K.E.

Suppose charge carried by the particleisg=e =162 107C,
Thus, inthis case, the enargy acquired by the charge will be:
AKE.=gAV = eAV = (1.8 x1077C){AV)

Moreowar, assume that AV =1 valt, hence,
AKE= gAV ={1.6=x10""C)= (1volt)
AKE=(16x10"")x {CxV)=1.6x107"J

The amount of energy equal o 1.5 x 107" is called one electron-volt and is denoted by
1 eV, It is defined as "the amount of energy acquired or lost by an electron as it traverses
apotantial difference of one woll”, Thus,

i e U IR TS (9.23)

Example 9.6: A particle carrying a charge of 2 falls through a potential difference of
3.0V. Calculate the energy required by it

Solution: g=2e AV=3.0V
The energy acquired by the particle is:
AKLE.=gaV ={Zei3.0V)=6.0eY
=60x1.6x10"J=9.6x10%J

9.7 MOTION OF CHARGED PARTICLES IN A UNIFORM
ELECTRIC FIELD

Two oppositely charged parallel metal plates produce uniform electric field between
them. The direction of ebectric field ks from positive to negative plate. A positive charge +g
placad in the field will move in the diraction of electric fisld whereas a negative charge -g
will move opposite to the electric fiekl. The magnitude of eleciric force acling on a charge
qis reprasanted in Fig9.17, glven by

E=gE vl igl) A

whare E is the electric intensity of the uniform Er %, ' ; N j:—.,r
|
v

l-l- + =+ -+ -+

-
=i

eleciricc fiald, If V' is the polential difference
between the plates and d is the separation of

plates, then
v Fig. 917

T Batiery

[ = = = = 1

To understand the effect of uniform electric field on the motion of charged particles, letus
consider an alectron placed belween the hwo plales, The electron accaleralas lowanrds
the positive plate due to a force Facting on il




BPhysics
hysics B |

Lat V=20V d=20cm=2 » 10" m, the magnitude of E will ba

Em-—= =1000 N C
d 2=10°m
The acceleration for the electron will be given by

F=ma
o ﬂnrf :.'E
i ]

Thecharge an anelectron g =e= 1.6x10 C and mass of electron m= 9.1 x 107" kyg. So,

160" C = 1000 N ' I
= — : 1
a T 1.76=10"ms
If the electron is releasad from the negative plate, the velocity gained by it when it

reaches positive plate can be found by the third equation of mation,
Z2aS =w? =y?
Here S=d=2x10m,v=0 v.=v=7
Putting the values in the above equation
X176 10 " ms"x2x 10" m=v'
or vi=T.04m' s
ar v=2.65x 10" ms"

9.8 PATH OF A CHARGED PARTICLE

The path of a charged pariicle is determined by the
alectric fleld in the region. The path is typically
straight if the field is uniform and the charged &r-q--1..)_.
particle is moving along the field. However, if a
charged paricle entars perpendicularly to Lthe e

uniform field between the oppositely charged B
parallel plates with a certain velocity as shown in
Fig. 9.18, it will not go straight. lts path will be
parabobic just like a projectile thrown horzontally
in the gravitational field. The haorizontal
component of the velacity of the charged particle
remains constant whereas vertical component is oo B SREL, H
accalerated due to the eleciric forca. =

Figure 9.18 shows that a positivity charged particle &) T IHLS
is attracted towards the negatively charged plate
and thus undergoes deflection in that direction,  Flg- 948

)
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- |+
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i
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+
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On the other hand, a negatively charged particle is attracted towards the positively
charged plate and experiences deflection in that direction.

9.9 SHIELDING FROM EXTERNAL ELECTRIC FIELD

An English scientist Michael Faraday invented a structure in 1836, called Faraday cage
or Faraday shield. Faraday cage is an enclogure that blocks the external electric fields in
conductive materials. It acts like a hollow conductor where devices or objects can be put
for protection from electrical external fields. Any electrical shock received by the cage
runs through its outer surface without causing any harm. The electric fisld inside the
hollow conductor remains zero,

To undersiand the working of Faraday cage, suppose thal a piece of conductar (zay
copper) carfies a number of free electrons, Each electron will experiance a force of
repulsion because of the electric field of its neighbouring elecirons. As a consequence,
all the slectrons rush 1o the surface of the conductor. Once static equlibium s
established with all of the excess charges on the surface, nofurthermovement of charge
occurs. If some electrons shift from the conductor to another object due to friction etc., a
net positive charge appears on the surface of the conductor. We can say,

At equilibrium under electrostatic conditions, any
excess charge resides on the surface of a conductor.

Mow consider the interior of the hollow conductor. The excess charges armange
thems=elves on the conductor's surface precisely in the manner that the total field within
the interior becomes zaro. In ather words, iy _

The conductor shields any charge within it
from electric fields outside the conductor,

To eliminate the inlerference of external
fields, cireuits are often enclosad within metal
boxes that provide shielding from such fiskds.

Figure 9.19 shows another aspect of how
conductors alter the elactric fisld linas
created by external charges, Fig. 8.19

The linas ara alterad bacause tha alactric fiald just autside the surface af a conductor s
perpendicular to the surface at equilibium under elecirostatic conditions, If the field
were not perpendicular, there would be a component of the field parallel to the surface.
Since the free electrons on the surface of the conductor can move, they would do so
under the force exerted by the parallel component. But in reality, no electron flow occurs
at equilibrium, Therefore, there can be no parallel component, and the alectric field is

perpendiculario the surface,

The principle of Faraday cage demands a material that contains a kot of free elecirons
that can move freely to the surdfaca of the material. Only the conductors have frea

[ + * + + ¢+ ¢
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electrons whereas insulators do not contain free electron, so the insulators can not be
used to construct Faraday cage,

A good example of Faraday cage in our daily life is that of cars. The chassis and bodies
of cars profect people inside due to its metal framed struciure during the thunderstorms.
The alactrical charge travels over the metal surface of the vehicle into the ground and
preventihe passengers inside.

A metal body of the microwave oven acls as a Faraday cage. Thus, they prevent the
microwaves in an oven from expanding into the envirenment. Matal frame of an airplana
also acts a3 a Faraday cage. When lightming strikes an airplane, electricity is distributed
along its melal frame surface that keeps passage is and all devices inside the alrplane
safe,

9.10 ELECTRIC CURRENT

Lsually, itis said that electric cumrent is the fiow of charge. Let us see what actually flows
in a conductor, Tha charge carrlers ara the free elecirons. When the ends of a conductor
are connacted to a battery or some other source an eleciric field is set up at every point
within the conductor. The free electrons experience a force in the direction of =E and
they start moving. As the frae electrons are bumping among the atems, so thay are not
accelerated in a straight line under this force. They keep on colliding with the afoms of
the conductor. The overall affect of these collisions |s to transfer the enrgy of accelerated
eletrons to the lathce with the resull that the electrons acquire an average velocity, called
the driff velocity in the direction of =E. The drifi velocity is of the order of
10%m ", This drift velocity of electrons forms the electric current. The slow drift velocily
does not mean that it takes long time for an electric current to set up. Ve know that as
soon aswe switch ON a bull, it lights up immediataly.

The reason is that on tuming the switch ON, all the free electrons in the circuit start
drifting. They repel the neighbouring ones and the dislurbance propagates along the
wira almast instantanaously. That is why, the electric current is sat up very rapldly.

if a net charge Q passes through any cross-section of 8 conductor in time £, the current |
flowing through itis:

The Sl unit of current is ampera (&) and it is the current due o flow of one coulomb
charge per second, | the chargas move around a circull In the same direction at all
times, the curment is said to be direct current (D.C}. For example, batteries produce direct
current. If the charges move first one way and then the opposite way, changing direction
in regular intervals, the current is said to be alternating current (A.C). Mastly the electnc
generators produce AC. The eleciricity supplied to our homes, offices, factories elc., by
powar station s A.C.

Conventional Current
As wa have discussed above, the electric current is due to flow of electrons through the
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metal wires, but early scientists believed that electric current was due to flow of positive
charges. The scentists have kepl the convention and take the direction of current low Lo
be the direction in which positive charges would move. We call it conventional current.

Conventienal current is hypothetical flow of positive charges that would have the
same effect in the circuit as the flow of negative charges that actually does occur,

In Fig. 820 negalive electrons arrive at
the positive terminal of the battary. The Cevica

same effect would have been achieved if

an equivalent amount of positive charge .
has lefl the positive lerminal, Therefore, Conventional E:‘“":"':'”

we can say that the conventional current s " i
flows from positive terminal towards the A

negative terminal. A convantional currernt .
iz congistent with our earier use of a Fig. 8,20
positive test charge for defining electric 2
fields and potential, The direction of conventional current is always from a point of higher
potential towards a point of lower potential that is from the positive terminal iowards the
negative terminal. Mow omward the current Falways means the conventional currenl

9.11 CURRENT THROUGH A CONDUCTOR

Consider a segment of the current carrying < L >
conductor having its length L and area of

cross-section A. The volume of the segment L':_B = — E I
is AL, as reprasented In Fig. ©.21. Let nba tha i'. —0O {_‘ E;.E — 0O

number of charge carmies per unit volume, ) -0
then total number of charge camies in the _
segment atany time are nAL. Ifthe charge on  Fig .21: Nagative charge camiers
a charge carrier is g, the total change present

inzide the segment at any instant is:

O = LR i i 9.29 @ Fiow of current s directly proportionat
v t ! tortha poiendial diference.
Usually, the charge carriers in @ conductor are & Flow of heat is diracily proponional o
free elacirons which have negalive charge, the tamparabure difference,
I & Flow of fuid s directly propodional fo
Suppose that charge carners move towards left T pressura i :

face of the segmant whan a potential difference is

Berent & Keiziip I i conchuciae Hinecsd
current is set up in the conductor directed el
towards right face. Assuming that drift velocity of  Gurrent is & Bow of charge, pressured

the charge carmies to be v, the time taken { by all gﬁ’ mation by vollage and kamperad by
the charge camiers originally present in the '
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segment to exit through the left face will be:

L
By definition of the current & v
-8
Putting the valua of @ and I in the above aqualion, we have
I= Lol
v
or T L e {9.30)

Example 9.6: A copper wire has a cross-sectional area of 2 x 10" m’ and carrles a
current of 3 A If the number of elections per unit volume is 8.5 x 10" m”, calculate the
drift velocity of the electrons in the wire. Charge on an electronis 1.6 x 107 C.

Solution:

f=3 & A=2x10"m’, n=865x10"m", g=16x10"C, v=t
Using equation,

[ = Amwg

3 = (2x10°)(8,5x 10" v({1.6x 10™)

¢ o= 11x10' ms’

9.12 OHM'S LAW

When a potential difference Vis apphed across the ends of a conductor, a curnent !'starts
flowing through it The Ohlim's law states that:

The current flowing through a conducter is directly proportional
to the potential difference applied across the conductor,
provided thereis ne charge in the physical state of the conductor,

Mathamatically,
Vo |
or V =Rl i [9231)

where R is a constant known as resistance of the conductor. The Slunit of resistance s
ohm denoted by the Greek capital letter omega (1), and is defined as:

The resistance of a conductor is 1 ohm if a current of 1 ampere flows
through it when a potential difference of 1 volt is applied across its ends.

9.13 RESISTIVITY AND ITS DEPENDENCE UPON TEMPERATURE
it has been experimentally seen that the resistance R of a wire is directly proporional to
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its length L and inversely proportional bo its cross sectional area A, Mathematically,

L
R x
or = L (9.32)
|:|‘|l1| ...............

whare p (rho) is a constant of proportionality known as resistivily or specific resistance of
the materal of the wire. & may be noted that resistance s the charactenstic of &
paricular wire whereas the resistivity is the property of the material of which the wire is
made. From Eq. 9.32, we have

e R_:" ............... [9.33)

The above equation gives the definition of resistivity as the resistance of a metre cube
of amaterial, The Sl unit of resistivity is ohm=metra { m)

Conductance is ancther quantity used to describe the elecirical properties of materials.
In fact, conductance is the raciprocal of resislanca, i.e.,

¥ el Ben
Conductance = T & = R'G s the conductance,
Mathematically, conductivity, o {sigma }is the reciprocal of resistivity (p), i.e.
o= -1- ....................... (9.34)
p

The Sl unit of conductivity is ohm m™ or mho m™, Resistivity of various materials is given
in Table 2.2. It may be noted from Table 9.2 that silver and copper are two best
conductors, That is the reagoen thal mosi electric wires are made of copper,

The resistivity of a subslance depends upon the

T

temperature also. It can be explainad by recalling | Subsiancs pliim) afH)
that the resistance offered by a conducior to the | Siver 1.62c10% | 0.00380
flow of electric curent is due fo collisions, which | Sopper 1.68x 107 | 0.00590
the free electrons encounter with atoms of the | Sod 227« 107 | 0.00340

lattice. As the temperature of the conductor rises, | Aluminum | 263} 10° | 0.003590
the amplitude of vibration of the atoms in the | Tungsten | 5.00x10° | 0.004E0
lattice Increases and hence, the probability of | kon 11.00 x 10" | ouB0520
their collision with free elecirons also increases, | Platinum 11.00 x 107 | 000520
One may say that the atoms then offer a bigger | Constanion | 49.00 % 107 | 000007
target, that is the collision cross-saction of the [ Mercary 04.00 x 107" | 0.00091
atoms increases with lemperature. This makes | Nichrome | 1000x 107 | 000020
the collisions betwesn free electrans and the [Camon A5x 100 | -0.00005
atoms in the lattice more frequent and hence, the  [Earmamum | 0.5 005

resistance of the conductor increases, SHicen H0-3900 oo
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Expermentally, the change in resistance of @ metallic conductor with temperature is
found o be nearty linear over a considerable range of temperature above and below 0°C
(Fig, 2,22}, Over such a range the fractional change in resistance per kelvin (s known as

the temperature coefficient (a) of resistance, i.e. "
e L (9.35} g
R,t T
whare A, and R, are resistances al temperatures e |
0°C and {°C respectively. As resistivity pdepends upon §
the tamperature, Eq. 9.32 gives a |
M R o=pt... (936
R, F‘?Aw , F:':;A.......ﬂ. J : : _—
Substituting the values of R and R, in Eq. 9.36, wehave =" " S0 % &%
L (9.37) Fig. 8.22: Variation of resitivity of
s 2 s Ca with teimiperatire
where p, is the resistivity of a conductor at 0 “C and p, is For Your Information

the resistivity at 1"C. Values of temperature coefiicients = i sl IOk W
of resistance of soma subslances are also Hsle.d in ruliuhl amc : of & concrete bridge
Table 9.2, Thers are some substancas like germanium,  made with carbon fibers. The
silicon, etc., whose resistance decreases with increase :::rﬂmm:f::t;:m‘lﬂ:ﬁ;:
1 5 -]
in temparature, tr.ﬁasa substances have negative oo e increasing over
temperature coafficients. tima the fikers are ssparsting
because ol cracks,

Example 9.7: 0.75 A curment fiows through an iron wire when a battery of 1.5
connected across s ends, The length of the wire ks 5.0 m and its cross-sactional area is
2.5% 10" m’. Compuite the resistivity of iron.

Solution:
The resistance R of the wire can be calculated by Eq. 9.31 1e.,
V1.8 .1
H= ; = 0754 =20VH =200

The resistivity g of iron of which the wire is made of is given by
] 8
A Z00xZ25x100 m =10 %107 Gm

=H_= —
PEFT B0 m

Example 9.8: Aplatinum wire has resistance of 10 Q at 0°C and 20 0 at 183" C. Find
the value of tamperatura coafficient of resistance of platinum.

Solution: R.=100, =200, (=466 K273 K= 193K
Tempaerature coefficiant of resistance can be found by
a=le=F _ 200-100 1 g gk

R.t 1001 183K 193K
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9.14 ELECTRICAL POWER

Consider a circuit consisting of a battery of emf & connacted in series with a resistance R
{Fig.9.23). Asteady currant | flows through the circuit and a steady potential diffierence v
axizts between the terminals A and B of the rezistor B. Terminal A, connected to the
positive pole of the battery, s at a higher potential than the terminal B, In this circuit the
battery is confinuously Efting change uphill through the potential difference V. Using the
rmaning of polential difference, the work done in mowving a charge © up through the

potential difference Vs given by | e o
Workdone = W=VxQ................{9.38) 0
This is the energy supplied by the battery.
The rate at which the battery is supplying slectrical
energy is the power output or elactrical power of the s {5 7 R
battery. Using the definition of power, we have K
Energy supplied Q
Electrical power = =V—
; P Time taken i
Since = % i 5
The above equation can also be written as: Eﬁ;m%ﬁﬁpmj
Electrical power = WVl ... (9.39) Ir Bl reesiitance 7

Equation 9.39 s 8 general relation for power delivered from & source of current /
operating on a voltage V. In the circuit shown in Fig. 9.23 the power supplied by the
battery is expended or dissipated in the resistor R. The principle of conservation of
energy tells us that the power dissipated in the resistor is also given by Eq. 9,39,

Power dissipated = Vx|

Alternative equation for calculating power can be found by substituting V=R, /= WRin
turm in Eg. 8.39.

P=Vxi=IRxI=IR

or P=Vxl=VxV/R=V/R

Thus, we have three equations for calculating the power dissipated in a resisior.
P=Vxl P=|'R,

P=VUR iiivarivinsenan (9.40)
If Vis expressed in volts and /in amperes, the power is expressed inwatls.

9.15 ELECTROMOTIVE FORCE (EMF) AND POTENTIAL DIFFERENCE

We know that a source of electrical energy, say a cell or a battery, when connectad
across a resistance, maintaing a sleady current through it Fig. 9.24. The cell
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continuously supplies energy which iz dissipated in the resistance of the circuit.
Suppose whean a sleady current has bean established in the crcuit, a charge O passes
through any cross-saction of the circuitin time £, During the course of motion, this charge
enters the cell at its low potential end and leaves at its
high potential end. The source must supply energy Wi |
the pasitive charge to compel it 1o go to the point of high =+
potential. The emf E of the source is defined as the
enargy supplied to unit charge by the call,

L8, eW (9.41) Fig. 8.24; Elecromative forae

o of g call

it may be noted thal electromolive force is not & force and we do not measure it in
newtons, The unit of emf is joule/couomb which is voll (V). The energy supplied by the
call 1o tha charge carriers i derved from the conversion of chamical energy into
elecirical energy inside the cell.

Like other companents in a circull, a cell also offers some 1 E %
resistance, This resistance is due o the electrolyte present ! B

betwaan the two electrodes of the cell and is called the Fig. 8.25: An squivalent dircuit of
internal resistance of the call, Thus, a cell of amf E having a cell of emf £ and ntemal

an internal resistance r is equivalent to a source of pure ™SSENCE L

amf E with a resistance rin series as shown in Fig. 9.25.

ATV
Let us consider the performance of a cell of emf £ and i

internal resistance ras shown in Fig. 3,26, A voltimeter of
infinite resistance measuras the potential difference @
i b

across the external resistance B or the polential
difference Vacross the terminals of the cell. The currant /

flowing through the circuit is given by . Sﬁ
. E %
R+r Fig. 9.26: The terminal potenial
or E=IR+Ir..cccccvvvnnninnr.{9.42)  diffarence v ol 8 cell Is E-Ir,

bty Sl et
potential diferance of the call in

the presence of current |, Whean S =
the switch 3 is open, no current
passas through the resistance.

In this case, the voltmatar reads

the emf E as terminal voltage.
Thus, terminal voltage in the o) i)
presence of the current (switch
ON)} would be less than the emf A volimater connecied across lhe teeminals of a coll measumss

Ebyl (@) the emf of the cell on open crcul,
by Ir. (6} the terminal potertial diferencs on a choead cireun
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Let us interpret the Eq. 9.42 on energy considerations. The left side of this equation ks
the ermf E of the cell which is egqual to energy gained by unit charge as it passes through
the cell from its negativa to positive terminal. The right side of the equation gives an
account of the utilization of this energy as the current passes the circuit. It states that, as
aunit charge passes through the circuil, a part of this anargy equalto Iris dissipated into
the cell and the rest of the ensrgy is dissipated into the external resistance R It is given
by potential drop IR. Thus, tha emf gives the energy suppliad to unit charge by the cell
and the potential drop across tha vanious elements account for the dissipation of this
energy inte other forms as the unit charge passes through these elements.

The emf is the “cause” and potential differance is ils "effect”, The emf is always preseant
even when no current is drawn through the battery or the cell, but the potential difference
across the conductor is zerc when no current flows throughiit.

Example 9.9: The potential difference between the terminals of a battery in open
circuit is- 2.2 V. When it iz connected across a resistance of 5.0 £, the potential falls fo
1.8V Caleulate the current and the internal resistance of the battary.

Solution:
E=22V, R=5.00, V=18V

We have o calculate fand r
S V' 1BV
V=iIR or |= 3 =m =036 A
Internal resistance rcan be calculated by using
E=V+Ir
22V=18V+036Axr
or r=1Av A’

9.16 KIRCHHOFF'S RULES

Kirchhoff's rules are two fundamental principles in circult anabysis that help 1o determine
the current and voltage in electrical circuits, They are particularly useful for analysing
complex circuits that cannot be simplified by Ohm's law and series or parallel
combinations.

Kirchhoff's First Rule

It ztates that the sum of all the currents meeating at a pointin the circuit iz zerm.

i.e., k3 ¢ AR {9.43)
It iz & comvention that a curent flowing towards a point

: e : | A note Is @ paind inoan elecinic
is taken as positive and that flowing away from a point S hi R B b it

istaken as negative. branches,
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Conszider a situation whera four wires meet at a point A
(Fig.9.27), The currents flowing inte the poaint Aare |, and |,
and currents flowing away from the point are f, and /,,

f
}‘
According to the eonvention, currents {, and [, are I S %
positive and cuments |, and I, are negalive. Applying !

Eq. 9.43, we have \\

b+l + (- L)+ (-L)=0 .-/

i
or (35 P 1 3 [9.44)

Using Eq.9.44, Kirchhoff's first rule can be stated in ﬂﬂﬁ 2 Tﬂﬂﬂg to Kirchhoff's
otherwords as ; S

Do You Know?
T.h' &L nf a“ thp uurrp:nt! ﬂ“'nﬂ _

towards a point is equal to the sum of all Iﬂ"'“'ﬂgn;'gh Pﬁﬂm ;

the currents flowing away from the point. nada,

Kirchhofl's first rule which is also known as Kirchhoff's point rule is a manifestation of [aw
of conservation of charge. If there is no sink or source of chamnge at a point, the total
charge flowing lowards the point must be egual to the total charge fowing away fromiil.

Kirchhoff's Second Rule

It states that the algebraic sum of voltage changes in a dosad circuit or & loop must be
equal o zero. Consider a closed dcircuil shown in Fig. 9.25. The direction of the curent /
flowing through the circuit dapends on the call having the greater amf. Suppose £ s
greater than E.. so the current flows in counter clockwise direction. We know that a
steady currant is equivalent to a continuous fow of positive charges through the circuit.
We also know that a voltage change or potential difference is equal to the work done on a
unit positive charge or energy gained or lost by it in moving from one point {o the other.
Thus, when a posilive charge O due to the current | in the dosed circuil (Fig.9.28),
passes through the call E, from low (-ve) to high potential (+ve), it gains energy bacause
work is done on it. Using Eq. 9.41 the energy gain is £,0. When the current passes
through the cell E, | |1 loses energy equal 1o - E,Q becausa hera tha charge passes from
high to low potential. In going through the resistor B, the charge Oloses energy equal to
—IR G where IR, iz potential difference across . The minus sign shows that the charge
is passing fram high to low potential. Similady, the loss R, E,

of energy while passing through the resistor R.is -IR. Q. |‘
Finally, the charge reaches the negative terminal of the m

i

cell E,, from where we started. According Io the law of :E’

conservation of energy, the total change in energy of our
system is zaro. Tharafore, wea can wrila: R,

E.Q -IR,Q-E,G,-1RQ=0 WA

Fig. $.28: According fo Kirchhoff
o E| -:R,-Ei— m’=n ......... {9.45} jﬂqm E.—flﬁ'.—E,g— fr. =0 z
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which is Kirchhoff's second rule and it states that:
The algebraic sum of potential changes in a closed circuit is zero.

We have seen thal this nule is simply a particularway of stating the law of conservation of

energy in electrical problams. For vous [nfocration

Before applying this rule for the analysis Signs for Eand |
of complex netwaork, it iz worthwhile to

E E
thoroughly understand the rules for I | | ;
finding the potential changes. " T

E=—F

{i] If a source of emf is traversed from E=+E
p-t:ﬁil'r'.r_a lo negali?e Iarr_rl_inal. l:h_E . AAAA s » A A ——
potential change positive. |t is ONPRiES, it S S R
nagalive in the opposite direction. =R ¥=ulR

(i} if a resistor is traversed in the direction of current, the change in potential is positive.,
Itis negalive inthe opposite direction.

Example 9.10: Calculate the currenis in the three f_ ‘i 'E
resistances of the circuit shown in Fig. 9.29. 5 5 L

Solution: H% 3 %ﬂ, Q%R

First we select two loops aboda and ebcfe. The chioice
of laops is quite arbitrary, but it should ba such that ¥ £ d

1 o ; R=100, R=300 /=150
ﬁp‘;rﬂﬂﬁlﬂnﬂﬂﬂlﬂduﬂﬂdﬂlhﬂﬁtmmﬁ'ﬂﬂﬂlﬂdﬂd £=d0V. E=80V. B =50V

Fig. 9.29

After selecting the loops, suppose a currant [, 15 flowing in the first loop and /, in the
second loop, all fowing in the same sense. Thesea currents are called loop currenis. The
actual currents will be calculated with their help. It should be noted that the sense of the
current flowing in all loops should essentially be the same, It may be dockwise or
anficlockwise. Here we have assumed it o be dockwisa.

We now apply Kirchhoff's second rule to obtain tha aquations required 1o calculate the
currents through the resistances. VWe first consider the loop aboda, Starding at pointa we
follow the loop clockwisae. The voltage change while crossing the battery E, is —E,
because the current flows through it fram positive to negative. The voltage change
across R, is=/,R,. The resistance R.is common to both the loops [, and I, therefore, the
currants {, and /, simultaneously flow through it. The directions of currents /, and {, as
flowing throwgh R, are opposite, so we have to decide that which of these currents is to
be azsigned a positive sign. The convention reganding the sign of the current is that ifwe
ara applying tha Kirchhoff's second rule in the first loop, then the current of thes loop e,
I, will be assigned a positive sign and all currents flowing cpposita to /, have a negative
sign. Sirmilarly, while-applying Kirchhoffs second rule inthe second loop, the current 1,
will be considerad as positive and [, as negative. Using this convention tha curranl




flowing through R, s (/, - 1) and the voltage change across is (1, - [JR. The voltage
change across the haftery £, is £ Thus, the Kirchhoff's second rule as applied to the
loop abocda gives

—E-LR-{lL-LR,+E =0
Substitufing the values, we have
— 40N - x100—(L-)x300+60V=0
20V=-100x[+3{ =1} =0
or $1,-3L=2VIN =24 . ...nalld
Simitarly, applying Kirchhoff's second mule to the koop ebcfe, we have
—E— =L} Ry— R+ E;=0
Substituting the values
60V - ([ —1)x300-Lx150+50V=0
=10V=150x[,+2{L=1)]=0
61L—-8L=2NO'=2A ... (il
Sotving Eq.ii) and Eq. {il) for /,and L. we have
L=066Aand |, =0224

Enowing the value of loop currents [, and [, the actual current flowing through each
rasistance of the circuit can be determined. Fig. 8.28 shows that £, and 1, ara the actual
currents. through the resistances R, and R, The actual cument through R, is the
difference of /, and I, and its direction i along the larger current . Thus,

The current through B, =1,= 213 A=0.66 Aflowing in the direction of |, 1.&., from a lod.

The currentthrough K. = [, ={, =273 A= 2/9 A = 0.44 A fliowing inthe directionof 1, L.e., from
clob,

The current through B, =/, = 2/9 A =022 A flowing in the direction of /, |.e., from fio e.

Procedures of Solution of Circuit Problems

After solving the above problem, we are in a position to apply the same procaedure to

analyse other direct current complax networks. While using Kirchhoff's rules in other

problems, itis worhwhile to follow the approach given below;

(i) Dwaw the circuit diagram.

{ii} The choice of loops should be such that each resistance is included at least once in
the seleciad loops.

(i) Assume & loop current in each loop. All the loop currents should be in the same
sense. hmay be either clockwise or anticlockwise.

(v} Write the loop equations for all the selected loops. For writing each loop equation,
the voliege change across any component is positive if raversed from low to high
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potential and itis negative if traversed from high to low potential.
{v] Solve these equaflions forthe unknown guantities.

9.17 WHEATSTONE BRIDGE

It is an electric circuit. The YWheatstone bridge =)
circuit shown in Fig. 9.30 consists of four \\
rasistancas R, R, R, and R, connacted in such
away 30 as to form a mesh ABCDA, A battery is
connected between points A and C, A sensitive
galvanometer of resistance R, is connected
between points B and D, If the switch 5 is
closed, a current will flow through the
galvanometer. We have io determing the
condition under which no curent flows through
the galvanometer even after the swilch is
dosed. Forthis purpose, we analyse this circuit
using Kirchhoff's second rule. We consider two
loops ABDA and BCDB and assume
anfickockwize loop currents |, and J, through the e | |- 4
loops respectively, The Kirchhofs second rule
as applied toloop ABDA gves:

AR =1 R—1R,=0 i (9.46)
Similarly, by applying the Kirchhoff s second rule to loop BCOB, we have

LR = IR == T R = 0eicierinsniasens (9.47)

The current flowing thraugh the galvanometer will be zeraif, | — I.=0or i, = 1. With this
condition Eg. 9.46 and Eq. 9.47 reduce lo:

Fig. 9.30: Whaatstona brdge ceroud

e B AT RS R (9.48)
and o M 1 AR et T (2.49)
Dividing Eq. 9.48 by Eq. 5.49, wa hava
i TR (9.50] Point to ponderi
—Ir;ﬁ'; I:H. Why Ie a three pin plug wsed

in some alectric appliances?
As [, = I, therefore,

R_R
S R

Thus, whanaver the condition of Eq. 9.51 is satisfied, no current flows through the

galvanometer and it shows no deflection, or conversely when the galvanometer in the
Wheatstone bridge circuit shows no deflection, Eq. 9.51 is satisfied. Ifwe connect three
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resistances R, R, and R, of known adjustable values and & fourlh resistance R, of
unknown value and the resistances R, R, and R, are so adjusted that the galvanometer
shows no deflection, then from the known resistances /., &, and K. , the unknown
resistance F, can be determined by using Eq. 8.49,

9.18 POTENTIOMETER

A polentiometar is mainly used o compara polantial differences and Lo find the value of
anunknown resistance, Itworks on the principle of Wheatstone Bridge.

Working of Potentiometer

Potential diflerence is usually measured by an insirument called a voltmeter. The
woltmater is connected across the two points in @ circuit betwean which potential
difference is to be measured, [1is necessary that the resistance of the voltmeter be large
compared to the circuit resistance across which the volimeter is connected, Otherwise,
an appreciable current will flow throwgh the volimeter which will alter the circuit current
and the potential difference to be measured, Thus, the voltmeter can read the corect
potential difference only when it does not draw any current from the circuit across which
itis connacted. An ideal voltmeter would have an infinile resistance.

However, there are some potential measuning instrumenis such as digital volimeter and
cathode-ray oscilloscopa which practically do not draw any current from the circuit
because of their large resistance and are thus very accurate potential measuring
instruments. But these inatruments are very expensive and are difficult 1o use. A very
simpha instrument which can measure and compare polential diferancas accurately is a
potentiometer,

A potentiometer consisls of a resistor R in the form of a wire on which a terminal C can
slide (Fig. 9.31-a), The resistance between A and C can be varied from 0 {o R as the
sliding contact G s moved from A to B, If

a batlery of emf E s connected across R |‘- ------ L ->|

(Fig. 9.31-b) the current hw'fng through it s X A =
{ = E/R. IFwe represent the resistance bebween _4

Aard C by r, Ihe potantial drop between these ) o

paints will be r i = r E°R, Thus, as G is moved
from A to B, r varies from 0 to B and the
potantial drop betweean A and C changas from
Oto E

Such an arrangement also known as potantial

divider can be used to measure the unknown A r Tc a
emf of a source by using the circuit shown in
Fig. 9.31. Here R is in the form of a straight wire () font :‘|

of uniform area of cross-section, A source of
potential, say a cell whose emf E, Is to be Fig. .31
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measurad, s connectad betwaan A and tha sliding E_ll
contact T through a galvanometer G, It should be
noted that the positive terminal of E, and that of the
potential divider are connected to tha same point A,
If, in the loop AGCA, the point G and the negative
terminal of E, are at the same polential, then the
two lerminals of the galvanomeater will ba at the
same potential and no current will flow through the
galvanometar, Thamefora, to measure the potantial
E, the position of C is so adjusted that the
galvanometer shows no deflection. Under this
condition, the emf £, of the cell is equal to the potential difference between A and C
whose value ERR is known, In case of a wire of uniform cross-section, the resistance is
proportional to the length of the wira. Therefore, the unknown emf is also given by

£ f
E mEmBE s R
Rt el {9.52)

where L is the total kength of the wire AB and 1 is its length from A ko C, after G has been
adjustad for no deflection, As the maximum potential that can be obtained belwesn A
and C is £, s0 the unknown emf E, should nol exceed this value, otherwise the null
condition will not be obtained. It can be seen that the unknown emf E, is determined
whean no currant |s drawn from il and therefore, potentiometer is one of the mosl
accurate methods for measuring potential,

The mathod for measuring the amf of a cell as described above can be usad 1o compara

the emfs E, and E. of two cells. The balancing lengths . and 7. are found separately for
the two calls. Then,

Fig. 8.32

f ¢
E, = EE‘ and E, -Ef
Dividing these two equations, we have

-E'| 1 II"I
E;- = : 2 FER s {9.53)

S0, the ratio of the emfs s equal lo ratio of the balancing lengths.

9.19 USE OF A GALVANOMETER

A galvanometar is an instrurment for datecting a current, We are not going to discuss is
internal struciure and how does it work, We focus only on its uses, It is ofien used in null
methods (o achieve precise measurements in ebectrical circuits. The null method
involves adjusting the circuit until the galvanometer shows no deflaction e, a zam
reading. This indicates that cerlain required conditions are met in the circuit. In this stale,
the electric potentials af both ends of the galvanomeler are the same. Although a
galvanometer has its own resistance, but at the null reading, its resistance does not
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come inta play. Tha raason is that, in this eondition no current |s passing through It The
null method i1s widely used in bridge circuits such as Wheatstone and potentiometer
Setups.

As we have studied in the previous section, the null method is used to maasura an
unknown resistance in the Wheatstone bridge circuits. The galvanometer is connected
batwaen the mid-points of opposite sides. The variabla resistance is adjusted untd the
gahranometer shows no deflection, Atthis point, the bridge is balanced and the unknown
registance can be cakculated using the ratic of the known resistances.

In & potentiometer, null method is used to measure an unknown voltage by companson

with a known reference voltage applied across the resistance wire of the potentiometer.

A galvanometer and a jockey are usad to make contact along the wire, Al null paint, the

potential difference between fhe jockey and the end of the wire equals the unknown

voltage, The position of the jockey gives the measure of the unknown voltage.

There are some advantages of using a galvanometer in null methad,

1. Null methad, eliminates the effect of the galvanometer's intemal resisiance on the
measurement resulting in more accurate readings,

2. Galvanometers are highly sensitive and can detect very small currenis of the order
ol 10" ampere.

3. "Mo deflection” indicates a direct and clear condition of balance making it easier to
identify the null polnt.

9,20 THERMISTORS

Athermistor is a heat sensitve resistor, Most
thermistors have negative temperalure
coefficient of resistance, i.e., the resistance £
of such thermistors decraasas when thair | f
temperature s increasad, Thermisiors with |

F

positive temperature coefficient are also
avallable.

In the thermistors, resistance decreases as
temperature increases. This |5 because
increasing lempearalure provides mora
energy to the charge carmiers (electrons or '

holes), enabling tham to move more frealy . ﬂ a.
and thus reducing resistance. | L) |

Thermistors are made by heating under high
pressurg semiconducior ceramic made |
I

Fig. 8.33: Themmistors sysmbols

from mixtures of metallic oxides of |
manganeasea, nickel, coball, copper, iron, atc.

These are pressed intodesired shapesand 9 938: Types of thermisios
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then baked at high temperature. Differant types of thermistors are shown in Fig. 9.34.
They may be in the form of beads, rods or washers.

Applications of Thermistors
Temperature Measurement

Thermistors are used In thermometers, and electric devices such as air conditioners,
refrigerators, heaters, microwave ovens, incubators, etc.to monitor iemperature.

Thermisiors with high negative temperature coeffickent are very accurate for measuring
low temperatures especially near 10 K. The higher resistance at low temperature
enables more accurate measuremeant possible.

Thermistors have wide applications as lemparatura sensors, |e. they convert changes
of temperature into eblectrical voltage which is duly processed. For example, these are
used In coolant temperature zensors in avtomobile engines to prevent the engine
overheating and in digital thermometers,

Temperature Compensation

Thermistors are used in circuits where temparatura changes could affect perfarmance.
Such as in oscillators, battery charging circuits and power systems.

inrush Current Limiting
Thermistors are used tolimit the intial fiow of curreniwhen a device is first burned on,
Voltage Divider

Thermistors are widely used as voliage divider. As
shown in Fig. 9.35 when temperature of a thermistor
increases, its rasistance decraases. This decreases g risiitanes
the voltage drop across the thermistor. As a8 result, the | a1 asdar od kD Thermistor
potential at point B increases that can ba used to l;-|—'“~'"~"~“~*‘-—a——-""
trigger a circuif connected to it, In case of a fire alarm, .L
the use of a thermistor tums the NOT gate low when it

gels heated. The output of NOT gate goes high and  Fig, .35

turms the siren QM.

9.21 LIGHT DEPENDENT RESISTOR

Light dependent resistor (LDR)is a resistor whose resistance decreases with increasing
light intensity. Due o this propery, it is alzo known as photo resistor. The LDEz are
typically made from semiconductor matarial ike cadmium sulphide. The material is
deposited in a special pattern on an insudating plate.

Working Principle

The principle used in an LDR is the increase in the conductivity of the material on
exposing il to ghl. In darkness, the semiconductor material has a few free alecirons
(charge carriers) resulting in high resistance. When light photons hit the materal, they




| Physics 1
-

transfer energy 1o electrons in the outer orbits, thes, making them free to conduct
eleciricity. This decreases the resistance of LDE. The amaount of light hitling the LDR's
surface determines the number of free elections, Conversely, less light results in
lowering the free elections, thus, making higher resistance. This change in resistance
can be measured and usad in circuils 10 sense light levels.

Applications of LDRs
Light Sensors

LDRs are commanky used in light sensing circuits such as automatic ighting systems in
homeas and streat lights, An LDR works just like a switch that turns ON at dusk and OFF
atdawn,

Camera Exposure Control

LDRs help in adjusting the exposure time in cameras based on the amount of available
light.

Voltage Dividar

In a typical circuit, an LDOR can be a part of voltage divider, that converts the resistance

change inlo measurable voltage change, This voltage can than be read by a micro-

controfler or other confrol circuiiry fo parform actions based on light levels, A circuit is
shown in Fig. 9.36 in which an LDR is used as voltage |A

dividar. In the dark, the LDR has a very high resistance as §

comparad to the standard rasistance (100 kQ) in the
circuit, Therefore the voltage drop across the LDR is wery
large as registered by a voltmeter. When the LDR is +] — b -
exposed ta light, the resistance of LOR decreases to very T rl

High ressstance
of asdar of k)

low. Mow, the voltmeter registers a lower reading. Hence, L.
the change in light intensity gives rise 1o change in LOR l_“%['
voliage. Therefore, by connecting mid-point B o the base 1

of a NPM transistor or to a NOT gate. The light sensor can

beused as a swilch,

Reliability of A Concrete Bridge Fig. .36

Inspectors can easly check tha reliability of concrete

bridge with the help of carbon fibers embedded inits slab.

This iz pozsible bacause of the conducting proparty of the

carbon fibers. Let us know step by step how does it work?

1. Firstztepis to know the electrnical properties of carbon
fibers. Carbon fibers are known fo be pood
conductors of eleciricity due o their high carbon
content,

2. Secondly, we can embed the carbon fibers within the

L3

Fig. 9.37; Carbon fibra shesis
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skab of the concrete bridge during its construction. Then we can connect them to
form a conduclars natwork.

Inspectors can check the reliability of the concrete bridge by applying small electric
current to the carbon fiber network. They can determine the integrity of the concreta
structure by measuring the resistance of the netwark.

The sensor inztalled into the network can show whether the electric resistance is
changing or not. If the resislance ramains the same over tme, it indicates thal the
concrete bridge is maintaining its structural integrity. However, if the resistance
increases, it means that the concrete is deteriorating or that the carbon fibers are
being damaged.

Some other methods are also used to check the sirength of the concrete bridge. For
example, a typa of sensors continuously monitor strain, vibration and temperature.
Internal flews, such as cracks or voids are detected by using ultrasound waves,

o

8.1

92
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! ﬁﬂulﬁﬁle Choice Questions !|

Two point charges A and B are separaled by 10 m. If the distance between them 15
reduced to 5m. the force axentod on each:

(&} decreases to half its original vakue

(b} increases to twice the original valua

(c)decreases to one quarter of s original value

{d) increases four imas to its original valua

Which electric charge is possible on a paricla?

(a)2.5x107°C  (b)32x107C (6} 1.6x10"C (dy6.02x10"C

Which diagram besl represents the slecinc field lines around two oppositely
charged parliclas?
) { -
e ! [ u & o
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9.4 Whatis the work dona on an election by potantial diference of 100 wolts?

(2l 1.6x10"eV (B)1.6x10" eV (c)6.25x 107" eV (d)100eV
9.5 Thepolantialata polnt situated ata distance of 50 cm from a charge of 50 pC is:
{a)9x 10" volis  (b) 18 = 107 volts (c)9x 10" volis (dy18x 10" volts

9.6 Aball of walght 0.1 N having a charge of 100 pC remained suspanded batwaan two
appogitely charged horizontal metal plates. The eleclric imensity between the
plales is;

(a}1ONC (B)100MC™ (e) 10O0ONCT (d)10000NC7

9.7 A piece of wire has resistance of 4. Il s doubled on itself so that its length
Bacomes hallbul ares of crogs-saction (g daublad., ts resistance now will ba
(algn (B4 [cl20) (dy 162

OB The currani thraugh a conductor is 3.0 Awhen i Is gltached scross a polantial
difference of 6.0 V. How much power is usad?

{a) 0.5W {By2.0W [c) 80wy (d) 18w
949 The algebraic sum of potential changes for a8 complata circull B e, I B the
statement of
{a) Ohm's law (b) Gauss's law
(ol Kirchhoffs firstlaw (d} Kirchhoff's second law

8.10 The radius of curvature of tha path of a charged particla in a uniform magnetic field
is diractly proporinnal to!

(&) the particles charge {b) the particle’s momentum
(&) the particle’s anergy (d) the flux density of the fisld

[@___short Answer Questions |
8.1 How does & moving conductor like an aeroplane acquire charge as it flies through
the air? Describe briefiy.
9.2 Define electnc intensity and eleciric polential.
9.3 A battery is rated at 100 A h (ampere-hour). How much charge can this battery
supply?
94 Iselectron-volt a unit of potential difference or energy? Explain.

8.5 A copper wire of lengih L has resistance R. |t is strefched to double of its length,
What will be the resistance of the new length of wire?

8.6 Why does the resistance of a conductor risa with increasea in lemperature?

9.7 Isthefilament resistance lower or higher ina S00W-220V light bulb than in a 100 W-
220V bulb?

8.8 Why does resistance of a thermistor decrease as temperature increasesy
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9.9 Which materials can be used to construct Faraday's cage and why?

|' Constructed ﬁfspnn se Questions .

5.1 Electriclines of force never cross each other. Why?

8.2 |s E necessarily zero inside & charged rubber balloon if the balloon is spherical?
Azsume that charge is distributed uniformly over the surface.

9.3 Electrostatic force is 10™ times stronger than gravitational force. Argue thal our
galaxy should be almost electrically neutral,

84 Anuncharged conducting hollow sphera is placed in the fisld of a positive charge g.
What will be the net flux through the shell?

9.5 Apotential difference is applied across the ends of 2 copper wire, What is the effect
on the drift valooity of free elections by

(1] increasing the potential difference?
(i) decreasing the length and the temperature of the wire?

9.6 Why the lerminal potential differance of a battery decreasas when the current
drawn from it is increased?

/@ Comprehensive Questions |

9.1 Explain the electric potential and prove thal electnc field intensity is equal lo the
neqative of potential gradiant.

5.2 State and explain Kirchhoffs rules.

9.3 Whatis a Wheatstone bridge? Explain it with the help of & diagram.

9.4 Whalis alight dependent resistor (LDR)T How can this be used as ON-0OFF swilch
farlighting?

8.5 Whatis a potentiometer? Descnbe its working.

:! NMumerical Problems 'i

|
9.1 Two unequal point charges repel each other with a force of 0.4 N when they are 5.0
cr apart. Find the force which each axerts on the other when thay are {a} 2.5 cm
apart(b)15.0cmapart. [Ams: (a)1.6N (b) 0.04N]
8.2 A particle of charge +20 pC 15 placed between two parallel plates, 10 cm apart and
having a potential difference of 0.5 kV between them. Calculate the electric field
between the plates, and the electnc force exered on the charged pariicla.
(Ans: 5 kKN C, 100 mN)
9.3  The eleciron and proten in a hydrogen atom are separated (on the average) by a
distance of appraximately 5.3 x 107" m. Find the ratio of the electric force and the
gravitational force between the electron and protoninthis state.
(Ans: =23 % 10™
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9.4

9.5

9.6

9.7

9.8

9.9

9.10

= |
After 8 pleasant showering, 8 water droplet of mass 1.2 « 107" kg is located in the
air near the ground. An atmospheric sleciric fisld of magnitude 6.0 x 10°N C'
paints vertically downward in the vicinity of tha water droplet. The droplet remacns
suspended at rest in the air. Find the electric charge on the droplet?
(Ans: —1.96 x 100" C)

An electron enters the region of a uniform electric filed, with v = 299 x 10" m 38"
and E = 300 N C, The horizontal length of the plates is 10.0 cm. Find the
acceleration of the electron while it is in the electric field. How long will it take o
pass through the field?

(Ans: — 5,27 x 10" m s, 3.534 x 10 8)
A disc of 10 cm’ area is placed in a vertical electric field E=5x 10° N C". If the
plane of disc makes an angle of 307 with the horzontal, determine the electnc
fiux through the disc. (Ans: 260J3MmM ' CT)
A circular copper rad is 50 cm leng and has 1 cm diameter, Find the resistance
across its ends, What should be the side of square cross-saction of a 50 cm long
tungsten red if its resistance is the same? [Resistivity of copper is 1.6%10" (im
and that of lungstenis 5.0x 10 Gm.] (A |
The copper winding of an electric fan has a resistance of 50 0 at 20 *C. After
running for some fime, the resistance becomes 58 £). How much is the increasein
temperatura of the winding ? [For copper o = 0.0039 K™ [Ans §
During an experiment & copper wire of 50 m long and 150 um thick is hung
verlically. Then a current of 1 A is passed across s ends for 50 s, Find tha
resistance of the wire and the heat dissipated during this process. [Resistivity of
copperis 1.859x 107 (1m ] (Ans: 4.8G0, 243107 J)
The emf of a battery Is 12 V. It is connected to a 3.6 02 resistor. If the internal

resistance of the battery is 0.2 £3, what will be the terminal voltage across the
battery? (Ans:11.4Y)



After studying this chapter, the students will be able to:

# GSiaba that a farce might act on a sumeni-carmying conduciar placed ina magnelic field

& Usa e eguation F=EILsinfi] [wih direcBons as inferpreted by Flaming's lefi-hand rule o solve
problems]

Dofing magnetic flux [as the prodect of the magnefic flux density and e cross-sactional area
perpendicilar o tha direction of the magnelic fux density]

Lga & = BA kD sobve probbams

Lisa the concepl of magnabic flux inkaga

Clafine magnetic lux densily [as the Torce acting per unit curmant pef unit length ona wire placed at righl
angles o the magnetic fiald]

Lisa F=BgVsint to solve probloms

Describe the molion ol & charged partice moving in a unilarm rragnetc field pependicular o the
directicn of motion of the pericle

Explain how elaciric and magnedic finlds can ba usaed in valocily salection

Explain experiments thal demonsirate Faradey's and Lene's aws [[3) hal & changng magnetic us
can Induca an-emf in a circu, (b) that the inducad emf i3 in such a direction a8 0 oppose tha changa
producing it, (o the faciors affecting the magnitude of the induced amd,]

Liss Faraday's and Leng's L= nfﬂm:l.rnnﬂg-mﬂ: irduchion o sckee problams

Describe how ferrofiuids work [they make use of temparary soft magnetic materials suspended in
liquids to devalop fluids that reaat to the poles of a magnat and have many applications in fisids such
a5 echonics]

@ Explain how selsmomelars make wse of eleciromagnetic indectcn be the sarbguake detecton
[Epecifically n tarms of:

ik army movamant of Ybration of e rock on which e seisnomatar rests [Durod iR prolactive casa)
readibs in refalive mallon bebssen the rmagnat and the ol (Suspendad by 8 spring foem e frame._ )

{ii} The amf induced in the coil is directhy proporbonsl to the displacement associabed

Wa have already studied that a magnetic fiekd is
praduced araund a current-carrying conductor. Also, a

changing magnetic field gives rise to a current in a conductor [y A
pleced in it. Electromagnetism is a key area of physics that ]ll (e ey
sludies how alectric charges and magnatic fields interact. c I

Flg. 10.1:
In 1820, Hans Christian Orsted found that electricity and Thi: e e
magnatism are corralatad. field produced by a current

For Your Information

Bagnatism stanad with lodestons 8 natumal minaral discoversd in ancient Tlrkie.
Lodeatone, or magnedite (Fe, O ), can abiiract matals Rke on and sieel and aligns

with ihe Earih's magnatic polas, Rading o the invention of the compass.
A e e ———————
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Electromagnatism is crucial for modam technolagy, including phones, computers, and
medical devices. In this chapler, we will explore basic concepts like ebectric fields,
magnetic forces, and electromagnatic induction, and see how these principles affect
both natural phenomena and technology. Understanding these concepts help us
appreciate how eleciromagnetism influences curworkd and drives innowvation,

10.1 FORCE ON A CURRENT-CARRYING CONDUCTOR IN A
UNIFORM MAGNETIC FIELD

It has been observed experimentally that a current-carrying
conductor placed in 8 magnetic field experiences a force, Considera
straight conductor carrying a sleady current placed parpendicular to
uniform magnetic feld. Assume the direction of the current is out of
the paper as shown by = in Fig. 10.2. The direction of magnetic fiald
produced by the current 15 also shown.

Just as bwo magnets exerd forces on each other through their
magnetic fiekds, a current-camrying conductor experences a force
due to the interaction between its ocwn magnetic field and the external
magnetic field. To determine the direction of this force, consider the %
interaction batweean the two flelds. Flg. 10.2

The magneatic fisld produced by the cumrent and the external uniform magnetic field
reinforce each other on the right side of the conducior and cancal each othar on the laft
side. Consequently, the conductor moves towards the side where the field iz weaker.
That ig, the farce on the conductor is directed ta the left. Thus, the force F is
perpendicular to both the conductor and the magnetic field. Fleming's lefi-hand rnile is
used to predict the direction of the force experienced by a current=carrying conductorin
a magneticfield. To apply the rule: Fors

Position your left hand such that the first I fr:'lawlln

finger points in the direction of magnetic field, P | W“

the second finger polnis in the direction of il X

current, the thumb will then point in the Il“‘-;_ E."*‘u

direction of force. il s
However direction of force can also be found by Fig.10.3

uzing nght hand rule thal can be staled as:

Curl fingers of your right hand from current fo
magnetic fisld through small angle, the stratched
thumb will indicate the direction of force.

The Fleming's laft hand rule is illustrated in Fig. 10.3.
Let us now determine the magnitude of the forceona
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current-carrying conductor placed inside a magnetic field, Experimentally. it has been
obzerved that the magnitude of the force acting on the conductor iz directly proportional
to the current [ in the conductor, the length L of the conductor, and the sirength of the
external magnetic fisld 8. The strength of the magnetic field is also known as the
magnetic induction B, which has the same direction as the field. Thus, the force Fon a
eonductar of langth L, carmying a currant [ and placed parpandicular to a magnetic fisld of
strength B, is given by

FxBIL
F = KBIL
In 51 units, the vakue of k = 1, Therafore,
F =Bl oo (101}
From Eq. (101 wacanseathal B = % , Bowe candefine B as:

The magnetic strength is numerically equal to the force exerted on a conductor of length
ane metre carrying one ampere currenl, placed perpendicular ta the magnetic fizld,

B
Equation B= E: alsogivesustheunitof B, The Slunitof Bistesla{T). T

i
iT=1NA m"

It may be noted that magnefic induction is a vector quantity, Hs
direction is that of magnetic field. f

R — ]

We can also consider a vector L which has a magnitude equal to the
length of the conductor and its direction is along the flow of current, Lsinks

Mow consider a conductor L placed at an angle 6" w.r.t ki
the magnetic field, then wewill use the component of L
perpendicularto B ie., (L sind), as shown in Fig. 10.4. = P

Then the Eq. (10.1) will become,

F= Bl . ouiuiissinsssmsisnr {10.2) Tt 1111
Inthe vector form the Eq, 10.2 can be written as .
FulLxB ..oienmena(10.3) T e

Equation (10.2) shows that the force will be Eﬁ?ﬁmﬁmﬁmﬂ
e

maximum [BIL) when the conductor is perpendicular ~ magnal. the sauth magrietic pole is
o iss L geogrs 1o pode and the
to the field, i.e., 8=90°, and it will be zero when the  nonn magnetic mrﬁ i ok

conductoris along the feld e, 8=0. geographiz sauth pola,

Example 10.1: A 20.0 cm wire carrying a current of 10.0 A is placed in a uniform
magnatic fiald of 0.30 T, If the wire makes an angle of 40° with the direction of magnetic
field, find the magnitude of the force acting on the wire.

Solution: Langthofthawire =L = 20.0em =0.20m
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Current =/ = 10.0A
Strength of magneticfield =8=030T
Angle = 8 = 40"

Substituting the valuesin Eq. (102 F=10.0Ax0.30 Tx0.20mx sin40* =039

10.2 MAGNETIC FLUX AND FLUX DENSITY

W can reprasent the strength of a magnetic field 8 by the lines of force in the same way
as for electric field. Then, the population of these lines in the field per unit area passing
through a surface perpendicular to the field will represent the magnetic flux, Thus,

The magnetic flux through a paich of area A is the 5

number of magneticlines passing through this area. f \ ATA .
Il B represents the number of Enes passing through unit (r /ﬁ)n.a(\ =
area placed perpendicular to the fiedd, then the total flux \ "; B
through area A perpendicular to the field will be: S N

= e L
B _% (10.4)

The surface A may not ba perpendicular to the fisld, that
is the normalio the surface makes an angle & with B as
shown in Fig. 10.5. Then, wa will havea to usa component
of B (Bocosd) along the weclor area A (Fig. 10.6).
Therafore, the lux passing through the surface will be:

R [ R RS R SR -y
As B and A both are vectors, sowe canwrite
b, = B.A e o L

Equafion (10,6} shows that &, is a sceler quantity.

Therafore, wea can dafine magnetic flux as: >
The magnefic flux &,. through a plane elemeant of area b -
A i a uniform magnetic fleld B Is given by dot product D
of Band A. il =
Mote that A is a vector whosa magnitude is the area of |, =

the elemant and whose direction is along the normal *n

io the surface of the element and § is the angle between n
the directions of the vectors B and A (Fig. 10.5). In ; - S
Fig. 10.7(a}, the field is directed along the narmal to the / s [
area, 50 H is zero (cos0°=1) and the flux is maximum, ’,f Ir’ B
adqual ta B4A_When the fisld iz parallel 1o the plane of the i 7 .
area (Fig. 10.7(b), the angle between the field and .

normal lo area is 90° La., A= 90°(cos90°=0 ), so the flux ™
through the area in this orientation is zero, Fig. 10.7
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In casa of a curved surface placed in a uniferm magnetic eld, the curved surface s
divided into a number of small surface elements, each element being assumed plane
and the flux through the whole curved surface is caloulated by the sum of the
conlribulions from all the eleameants of the surface using Eq.(10.5).

From the definition of tesla, the unit of magnetic flux is N m A~ which is called weber
(Wh). According o Eqg. 10.5, the magnetic induction B is the flux par unit area of a
surface perpendicularto B, hence, itis also called as magnetic flux density. 112 unitis Wb
m”. Therefore, magnetic induction, i.e. the magnetic fisld strangth is maasured in terms
of Wbhm orNA" m” (tasla).

Example 10.2: A rectangular loop of wire is placed in a uniform magnetic field of
magnilude 1.2 T. i the loop s 25 cm long and 20 cm wide, determine the magnetic flux
through the loop for the three orientations as shown in Fig. 10.9.

WY W . WO W I'\;.l""} 'Il""-"u"l-':.‘,#
4 A ,.—-:'
/ 4|
Zillm 7l
A
=] L] fic)
Fig. 10.8

Solution: For orientation {a), angle between B and area
vector Ais 0=60° &0° A
Uzing i, = BA cosh B

= 1.2Tx20cm % 25 cm xcossl”
1.2Tx5x 10" m" x0.5

= 3x10'Wb
Fororientation (b), angle & =457 45°] 48 &
&, =1.2Tx5x10°m x0.707 B
=42 x10'Wh
Fororientation (), angle 6= 30"
g, =1.2T x5 x10°m’ x 0.B66 ﬂﬁ;
= 5.2x10°Wb

Fig. 18.8
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10.3 MAGNETIC FLUX LINKAGE

Magnatic flux linkage is a key concept in electromagnetism, particularly in the study of
inductance and electromagnetic induction. Magnetic flux inkage refers fo the product of
the magnetic lux through a coil and the number of tums in the coll. It essantially
measures how much magnetic flux is inked with the coll due to its muktiple turns, and is

an important factor in undersianding how coils and induciors operate in elecirical
circuits,

Magnetic flux linkage=$=N ¢, .. ....(10.7}

whara @, i5 the magnetc flux through a
single loop of area A and N are the fotal
number of turns of the cod. Magnetic flux
linkage plays a cruckal role in the design and
operation of fransformers, electric motors,  When you insert your credit or ATM card info

i the Automated Teler Machine [ATM]. &
genarators, and inductors. This concept is s o the card containg s of

particularly important in Faraday's law of  tiny magnatic domains held togethar by a resin
slectramagnetic induction, which we wil ﬂ";ﬂm ::'ihi"' :H?d;r;";:m
explore later in this chapter. YOI BCORSS 10 your Mg count.

10.4 MOTION OF A CHARGED PARTICLE IN A MAGNETIC FIELD
We have observed thal a curreni-carrying conductor placed perpendiculardy in a
uniform magnetic field experlences a force F. Since a current is the flow of electric
charges, it raises the guestion: do individual charges moving through a magnetic field
also experence a force? The answer is yes. Expenments show that a charged particla
does experence a force when it moves across a magnelic field. We can calculate this
farce by examining the behaviour of a curent-carrying conductorin a magnehic fielkd,

charged particles, each with charge g, are passing in bk i
! Like electre fiekt lines, magnetic
time t. Tha motion of thesa charged particles produces R

For Your ivformateon

a current fin the conductor, which is given by oiher bul Instead push agan of
,_Q_Ng ach other.
I I

where (2 is the 1otal charge flowing in time £, If v i5 the velocity of charged particles, then
the valocity of the pariches along the conductor is

v=vL
where L is the unit vector in the direction of the current. The sign of the force depends

on whether the chamge g is positive or negative. However, the unit vector L is directed
along the direction of the current, which is he direction of motion of positive charges,

Since the particles take time f o move across the conductor of length L, therefore,
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;:é Point to ponder

v Why does a piciure becomes distored
L L R BB Scraun st Ty Compiitis Marbar
! L Dscloscope?
If this eonductor is placad in a uniform magnatic fisld B, it will expenence a forca F,
as given by Eq.10.3. B inlo 1he papar
SN S e {10.9)
BE L=l e {10,10)
Substituting the values of | and L in Eq. (10.3), we have
F=$[LL!H} g * ® ® X x x
or F = NgvLxB A10.11) B inks the paper

Az velocity v is directed along the conductor L, so
we can write

TR R {10.12)

Therefore the force on a single particle will be b = & = ¥ K % R
Pom R G {10.13} Fig. 10,10

Ii #tis the angle between B and v, then magnitude of force F is given by
= AR e e (10.14)

Therefore, the force is maximum when B is perpendicular fo v, i.e., 8= 90, and force is
zera when B is in the direction of v, i.e., 6 = 0. The direction of force can be known by
applying Fleming's keft hand rule or rght hand rule as shownon Fig. (10.8).

{2} The positively charged particle enters into the magnetic fisld akeng the dotted line on
plana of paper. It experiencas a force in tha upward direction dus 1o which it is
deflected along a curved path (Fig. 10.10-a).

(b} The negatively charged particle is deflected downward by the farce acting on it
downwards (Fig. 10.10-b).

Example 10.3: An election enters info & uniorm magnefic field perpendicularly with a
speed of 10° m 27 What path the electron will move along inside the flald?

(B=25Wom®, m=911x10"kg, e=18x10"C)
Solution: The Force Facting on the electron will be.
F = gvB sind
Az the velocily vis perpendiculartc B, Le., =80 the charge g = &, 20
F=evb =1 =evB
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Since F acts perpendicular 1o v, so this force provides centripetal force to the electron to

keepitinacircle of radius r. Then
BB = @
I

e asia

Putting the values in above equation, wa have

_ 81110 kg 10 m g’
16x10"Cx 25 Wb m*

F=23x100m
The path of electron will be a cirde of radius 2.3 = 10" m,

10.5 VELOCITY SELECTOR

A velocity selector is a device used fo determine the . B inda tha paper
]

velocity of a charged particke. In this device, electric and o L T B E
magneiic forces are applied to the moving particle in g | I o, e e
such a way that they balance each other only for one “”E‘l*:_?t" S B T
value of wvelocity, allowing the particle to continue S0 L <
maving with a constant velocity. X R OOX N A R O
Conzider a particle with a positive charge +g that enters A . H: - : T

a uniform magnetic field B at a right angle to if, with a W s it
x

velacity v, The magnetic force acts on the partice in the X ¥ X R
upward direction, as shown in Fig. 10.11. To balance this BN K GEOK N X
magnetic force, an eleciric force must act dewnward on T 7S
the particle. gl » !
A velocity selector consists of a oylindrical tube located T i T T . |
within a magnetic finld B. Inside the tube 15 a parallel K % ¥ KX N K
plate capacitor that creates a uniform electric field E. N OE ELX LW
The electric field E is onented perpendicular to the Fig, 10,12

magneticflald B. as shownin Fig, 10,12,

When the charged parlicle enters the left end of the tube, the magnetic force acts
upward, while the electric force acts downward in the direction of the electric fiald E on
the positively charged particle. If the strengths of the electric and magnetic fields are
adjusted appropriately, these farces will cancel each other out, With no net force acting
on the particle, its velocity ¥ remains constant in accordance with Mewton's first law, As a
result, the particle moves ina straightline at a constant velocity and exits the right end of
the tube.

The particles with velocities different from v will be deflecled and will not exit at the right
end ofthe tube,
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The magnitude of the velocity selected can be determined as below.
As the velocity vis parpendicular to both B and E, therafare,
Magnetic force {upward) = Bqv

Electric force (downward ) = gE

For no deflection of particle, Bgv = gE

E
or V= = (10.15)

Example 10.4: Alpha particles ranging in speed from 1000 ms” to 2000 m &” enterinto
a velocity selector where the alectric intensity is 300 V m” and the magnetic induction
0.20 T, Which paricle will move undeviated through the field?

Solution: E=300Vm =300NC", E=020T

Only those particles will be able to pass through the plate for which the electric force gE
acting on the particles balances the magnetic force Bgwv on the parlickes as shown in the
Fig. 10.12.

The G= R A fmmFPMt ""E”““" mow
Thus, the selected spead is: citarged Lﬁha r:g:gug r.ul,nF

! Inwhat direction it should move Ehai
E__300NC _ichnme' Mheloreisnol exsredanit?

"B D20NAm
The alpha paricles having a speed of 1500 m s™ will move undeviated thraugh the field,

Example 10.5: A charged paricle moves through a velocily selector at a constant
velacity in & siraight line, The electric fisld of the velocity selectoris 4.8 = 10°' N C”, while
the magnatic flald is 0.2 T. When the electric fiied I lumed OFF, the chargad particle
travels on a circular path of radius 3.0 cm, Find the charge to mass ratio of the particle.

Bolution: Since the paricla is moving in a diraction perpendicular to both E and B, 5o
the magnitude of velocity v will be given by

gE = Bgv
or v = E
=]

When the electric filed is tumed off, the particle will move along a circular path of radius r.
Then the magnetic force provides necessary cenfripetal force, Then
e

f

Bgv =
20, charge to mass ratio becomes,

3 =
|

v
Br
Putting the value of v =% we have
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N om E
m B

Putting the values of E, B and r, we have
g _  4B8«<10'NC”

L = 410" Ckg'
m (0.2 TF(2=10°m7) k9

10.6 INDUCED EMF AND FARADAY'S LAW

It has been observed experimentally that when a conductor moves across a magnetic
field, an electromodive force [emf) is induced between its ends. The induced emfin the
maving cenductor is similar to thal of a baltery, Thal s, if the ends of the conductor are
connected by a wire to form a dosed circuit, a cumrent will flow through it

The emf induced by the motion of a conductor

-across a magnetic fielkd is called motional emf, B info the papar
Consider an experiment as shown in Fig. 10.13. A g #—i g
conducting rod of length L is placed on two l '

parallel metal rails separated by a distance L. A
galvanomeler is connected between the ends ¢
and d of the rails. This forms a complete
conducting loop abcda. A uniform magnetic field
B iz applied diracted inta the page. Initally, when
the rod is stalionary, galvanometer indicales no
currantin the loop. ifthe rod is pulled to the right
with constant valocity v, the galvanomater indicates a current flowing through the loop.
Obviously, the current is induced due to the motion of the conducting rod across the
rmagneatic field, The moving rod is acting as asourcaofemf =V, -V, =AW

When the rod moves, a charge g within the rod also moves with the same velocity v in
the magnetic field B and expeniences a force given by, Eg. 10,13,

d — &
Fig. 10.12

F=zgwvxB
The magnitude ofthe force is:
F=gvEBsini
Sinca angle 6 batween vand Bis 90°, so
FegB Ll (10.18)

Applying right hand rule, we see that the force F acting on the charge g is directed from
paint a to paint b along the rod. As a result, ehargas migrate 1o the top end of the
conductor, As more charges move, a concentration of charge builds up at the topend b,
while thera is a deficiency of charges at the bottom end a. This redistibution of charge
creates an electrostatic field E directed from b to a. The electrostatic force on the charge
18 F=qE directed from b to & The system quickly reaches an equilibrium state
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where thasa two forces on tha charge are balanced. If

E is the electric field intensily in this state, then
qE =qvB

or | - T —— {10.17)

The motional emf £ will be equal o the potential
difference AV = V, - V, between the two ends of the

maoving conducter in this equilibrium stata. The gradient
of potential is given by AV/L. As the electric intensity is  Wireless charging woks under

given by the nagative of the gradient, therefora, ekl elacifomagnesic
E = = E?'Li .................... :.1 l]-."lﬂ} Painit to ponder]
ar AV ==LE ==(LvB)
The motional emfis:
£ AV mo LV s (10.19)

This hantar cparaies an the prnople

is i i i of eleciromagnetic induction. The
This is the magnitude of motional emi. However, if the WL o m:ﬂ:w i hmmmm

angle betweenvand Bis 0, then whereas that in the ghass pot is et
Evan e glass top of fhe heater i@ col
E=—vBLsind ... [(1020) o feesch, Tha coil just bansath tha top

cavries ac that |:|:l|:-|:h.||:_l:|'r changing
Due to the induced emf, positive charges fliow along the |.1?,,,,., tﬁ""‘;‘.:"ﬂmm_ e ﬁ
path abeda; therefore, the Induced current is “'"::"““‘*‘M"“““m
antickockwize in the diagram. As the current flows, the ﬁmmﬁﬁmﬁmw
quantity of charge at the top decreases, which reduces tha
alectric fiedd intensily, while the magnatic force remains unchanged. This imbalance
disturbs the equilibrium in favour of the magnetic force, Consequently, as the charges
reach the end a of the conductor due to the current flow, they are carred back to the top
end b by the unbalanced magnetic field, and the curent continues to flow.

Faraday's Law — Fopa Pt

The motional emf induced ina '

mod moving perpendicular to a
magnatic fiedd is £ = -vBL. Tha =
mational emf as well as other
induced emfs can be described
in terms of magnetc flux.
Consider the experiment
shown in Fig, 10.14 again. Lel
the conducting rod move from
position 1 to position 2 in a

I_! into papar

Fig, 10,14
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small interval of tima Af. Tha distance travelled by the rad

intime Afisx,=x, =AxX.

Sinca the rmod is moving with constant vaelacity v, therafore, Q
g % ___________________ (10.21)

Putting this value of vin Eq. 10.13, we have ) §
&= -u‘EL:-%B.L .................. (10.22) 9:

As the rod moves through the distance Ax, the increase in
the area of loop is given by AA = AxL. This increases tha
fluz through the loop by Ag = (A4)B. Putting (AxL)B = Adin
Eq. 10.22, we have

i _% .................... (10.23) O“ —
B e

Eqationi 10,20 shows that if the magnetic flux iz changing
through the single loop of @ conducting coil, then the
negative of the rate of changs of magnetic flux i equal to
the emfinduced in the loop.

Ifthere is a coil of Nloops instead of a single loop, then the

WM ON M OH XN X XK

oMM MOM NN M
L S N O e s
@I{
moH M MR X M-

induced emfwill become N times.
Ad
e, 2 =M= e 10,24
g, & = | |

Although the above expression is derved on the basis of add
maticnal emf, but itis true in general, This condlusionwas
first arrived at by Faraday, so this is known as Faraday’s

law of electromagnetic induction which states that.

: For Your information
The average emfinduced ina conducting  This heater aparates on the principle of
coil of Nloops is equal 1o the negative of  slectramegnatc induction, Tha water in the matal
thea rate at which tha. m:a.gna'ﬂc flux pol s bolling wheress that in the glass pot I8 nod.

through the coil is changing with time., Even the glass top of the healeris cool fo fouch,
: The coil just beneath the bop cesries ac lhal

The minus sign indicates that the direction  Prodices changing magnedic flx. Fhix linking

. 1 y with pots induce emf in fhem, Gurrent is
of tha induced emf is such that it opposes At S gl S R PSR o i

the change in flux, butmo current flows through the glass pan. why

10.7 LENZ'S LAW AND DIRECTION OF INDUCED EMF

In the previous section, a mathematical expression for Faraday's law of
alectromagnetic induction was derived as:
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£ =-N——
Ad

The minus sign in the expression i very important; it relates to the direction of the
induced amf, To determine tha direction, we use a principle based on the discovery
made by the Russian physicist Heinrich Lenz in 1834, He found that the polarty of an
induced emf always produces an induced current thal opposes the change in the
magnetic fiald that caused the emf. This principle is known az Lenz's Law, which states
that

The direction of the induced current is always such that it
opposes the change that caused the current.

Lenz's Law specifically applies to induced currents and not direcily 1o induced emf, This
means we can apply Lenz's Law o closed conducting loops or coils. If the [oop is mot
closed, we can imagine it as if it were closed o defermine the direction of the induced
current, and from this, we can infer the direction of the induced emf.

Let us apply Lenz's law to a coil in which a current is induced by the movement of a bar
magnel. & current-carrying coil generates a magnetic field similar to thal of a bar
miagnet, with one face of the coil acting as the north pole and the other asthe south pole,
To opposa the motion of the bar magnet, the face of the coil fowards the magnet must
become a narth polke {Fig. 10_15). Thiz armangemeant causes the two north poles 1o repel
each other. According to the righl-hand rule, the induced current in the ool must flow
anticlockwisa when viewed fram the side of the bar magnet.

% i) S

CRNTER] 1%

I
Flg. 10.15 anlickckwiss T @ ‘IL

According 1o Lenz's law, the “push” of the magnet is the *change® that produces the
induced current, and the current acts to oppose the push. On the other hand, if we pull
the magnet away from the coil, the induced current will oppose the “pull” by creating a
south pola on the face of coil towards the bar magnat.

Lenz's law is slso 8 manifestation of the law of conservation of energy and can be
conveniently apphed to circuits involing Induced currents. To understand this, let us
revisit the experiment depicted in Fig. 10.16. When the rod moves ta the right, an emfis
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mduced in it, causing an induced curmrent to flow through the loop in anticlockwise
direction, Becausa the current-camying rod is moving within the magneatic flekd, it
experiences amagnetic force F_ with the magnitude of F_ =ILB sinG)~,

Acearding to the right-hand rule, the diraction of the magnatic force F_ is opposite 1o that
of the velocity v, soit tends to siop the rod (Fig. 10.16-a). To keep the rod moving with a
constant velacity, an external force equal in magnitude to F,, but opposite in direction
must ba applied. This external force provides the energy necessary for the induced
current to fliow, Thus, electromagnetic induction adheres to the law of conservation of

Snargy. B ko papat B into papar

T =) ' (b
Fig 1016
The Lenz's law forbids the induced current directed clockwisa in this case, bacause the
force F,, would be, then, in the directicn of w that would accelerate the rod towards right
{Fig.10.16-b). This in turn would induce a stronger current, the magnetic field due to it
also increasas and tha magnetic force increases further. Thus, the motion of the wire s
accelerated more and more. Starting with a minute quantity of energy, we obtain an
ever-increasing kinetic energy of motion apparently from nowhere, Consaqueantly, the
process bacomes self-parpetuating which ks against the law of conservation of energy.

Example 10.6: A metal rod of length 25 cm is moving at @ speed of 0.5 m s'ina
diraction parpendicularto a0.25 T magnetic field. Find the emf produced in the rod.

Solution:

Spead of rod =y=05mg’
Length of rod =L=25cm=0.25m Eﬂi‘ﬂm:m;
Magnelic flux densily =8=0.25T=025NA"m" sehp a polenlial differsnce
Induced emf sg=7? s bollz
Using the relation,

e=viBL

g=0.5meg" k026N ' x0.26m
E=3.13x10°JC =312 10"V
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Example 10.7: Aloop of wire is placed in a uniform magnetic lield that is perpendicular
to the plane of the loop. The strength of the magnetic field is 0.6 T. The area of the loop
begins to shrink at & constant rate of "’_ﬁ—‘? = 0.8 m' 57, What is the magnitude of eml
induced in the loop whibe itis shrinking?

Solution:  Rate of change of area = % = 0.8 ms"

Magnetic flux density =8 =06T=06NAn"
Mumber of turns =N=1
Inducad amf - )

Rate of change of flux = = _ 84 caspe - g8
A Al At

Applying Faraday's law, magnitude of induced emf is:

=1 x0ENAM'=08m &
E=048JC'= 048V
10.8 FACTORS AFFECTING EMF

1. Rate of Change of Magnetic Flux

Faraday's law suggests that faster changes in magnetic flux result in greater induced
amf,

2. Number of Turns of the Coil

According to Faraday's law induced amf is alsa proportional 1o the number of tums of the
coil. More turns resultina greater induced emf.

3. Relative Speed

The speed of the oodl {or conductor) through a magnetic field also affects the magnitude
of the induced ami. Faster speed increases the rate of change of magnefic flux that
resulls into an increasea in the induced ami.

10.9 FERROFLUIDS

Farrofluid 15 a unique material that exhibits bath kquid and magnetic properties. It
operates throuwgh a combination of magnetic and fluid dynamics principles.

Essentially, the ferofluid is & calloidal suspension of magnatic particles in a carrier fluid
(zuch as oil or water]. Typically, the magnetic particles are ron oxide, ground to the
nanc-scale and approximately 10 nanometres in size. These parficles are coated with a
surfactant, a substance that reduces surface tenskon. This coating prevents the
particles from clumping together, ensuring they remain evenly dispersed in the fluid. The
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viscosity of the fluid, the nanometre size of the partickes, and their constant movement
pravent the particles from salfling down.
Whan there s no magnet around, a ferrofluld acts like a For Your Informaticn
iquid, but when there is a magnet nearby the parlicles

: : Tha firsk farrofiuid devaloped by
ara lemporarily magneatized and.ma quIrT'I DECHMEs 8 pacs i 10680 was S
miagnet. They form structures within the fluld causing the  natural magnetite. Fermofiuid was
farmofluid to act more ike a solid. When the magnet is  invented to move liquids through
removed, the particles are demagnetized and the =P3ce
fermofluid acts like a liquid again,

This phenomenon is due 1o the competition between magnetic forcas, surface tension
and gravity. In the presence of strong magnetic fiekd, the formation of chain-like
structures s & resull of magnetic forces pulling the fluid upwards while gravity
and surface lension work © pull it back down. These chains align akong the magnetic
field lines and increase the
viscosily, making it behave
like a solid bulging in centain
direchons. These are
commonly known as splkes.
However, the spikes are
formad whera the magnatic
forces overcome the other
forces (Fig, 10,77 ). Fig-10.47

The following experiment will exhibit this phenomenan. W
Expariment

You need some laser printer toner, some cooking ofl. a
testiube, aglass boltle, a small stick and a magnet,

Procedura

Four same foner in the test tube, Remamber that laser
printer oner contains 40 % iron oxide in nanometre
particle size. Add some cooking oil in it and mix it well
with the siick to form ferrofluid. Put this fluid in the
bottle. The fluid will act like a liquid on shaking the
botile. Mow bring the magnel near o fluid oulside of the |
beitthe.

You will observe that the fuid jumps fowards the
magnet, because it has itself become a magnet. If we
hold the magnet on the side of the bottle, you will sea a
structure with spikes formed by the fluid as shown'in
Fig. 10.18.
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Applications of Ferrofluids

There are many applcations of ferrofluids in the fielkds of electronics, medicine,
engineering, and active research in Physics and Material science. In electronics,
ferrofluids are usad In rotary seals for computer hard drives and other rotating shaft
motors, In loudspeakers, ferrofluids are used to cool the voice coil which can heat up
during opearation, The magnetic field holds the fluid in place around the coil, allowing it to
absorb and dissipate heat more effeciively, Ferrofluids are also used in speakars to
dampen vibrations and improve sound quality.

in medical applications, ferroflulds can be diracted 1o specific areas in tha body using
external magnets, allowing for targeted drug delivery. The magnetic parlickes can cary
drugs directly to a lumor or other targeted site, reducing side effacts and impraving
treatrment efficlency. Ferroflulds can also be used as contrast agents in magnetic
rescnance imaging (MR},

Other applications of ferrofluids indude damping or precisely contralling the flow of
liquids by manipulating the magnetic field.

10.10 A SEISMOMETER

A seismometer iz an instrument that responds to any movement of the rocks under the
ground or vibration caused by earthquakes, wvolcano eruplion and explosion, A
selsmometer detects earthquakes by using electromagnetic. induction to conwvert
ground motion inte electrical signals. Typically, a seismometar includes a weight
suspandad by a spring. When an earhquaka occurs, the ground moves but tha waight
tends to stay stationary due to inertia. This g =

rasults in relative motion between the f .\
weight and the frame of the seismometer
which is attached fo the ground, The
weight is ofien attached toa magnetwhich
moves inside a codl of wire (Fig.10.19).
This setup works according o Faraday's MH
law of electromagnetic induction, that is,
lhe changing magnetic flux through the
coil induces an emf in the coil. This gives

rse b aninduced alectnc current,

7 . : Fig. 10,18 Sefemaomater
The induced current is propostional
to e \"E‘Iﬂ'ﬁtﬁf ﬁf tha glﬂund Far Your Iifodrmaliod

motion. The electrical signals . sarhiquakes are caused by plate  Ipclonics
generaled are then amplified and (displacement) and secur at & deplh of 80 km, Thess
recorded. Thus, data is provided on  2arthquakes are categorzed as shallow, Intermadiate and
the amplitude, frequency and the daap infarmedisie can be as daop, as 280 km beneath tha

duratipn of the sarthguake waves, CTUSE WhEE- 60 SoriwuBies.can Pench depta past B0 km:
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various characteristics of the ! :

earthquake, such as location, There are fwo main types of seismec waves that generate

warfuguakes P-waves afe primary waves which
magnitude and depth. Wﬁmnmmwﬂmx

Usually, & saismometer is buried [EnSversainnaturs,
under the ground at a depth of 50-1000 metres. It is placed in a protective case called a

wault. This is a eylindrical steal tank that is approximataly 1 metre wide and 2 melres
deep with a concrete pad at the bottom (Fig. 10.20).

Fig. 10.20
_ auestions D NN
Huﬂlplr.- Choice Questions ||

Choose the correct answer.

10.1 Acument is flowing fowards north along &8 power line, The direction of the magnetic
field over the wire (2 directed lowands

(&) north ib) south () aast (d) wast
10.2 The radius of curvature of the path of a charged particks in a uniform magnetic field
is directly proportional io:
(a) the particle’s charge (b) the particle’s momentum
(z) the particle's enangy (d) the flux density of the fielkd magnesic fickd
10.3 The diagramshows a beam of electrons entering a magnatic
fimkd. What is the affect of magnaotic fisld an the alecirons?
(a) Theyare deflected into the plane of the diagram.
(b) They are deftected out of the plane ofthe diagram.
(e} Theyare deflected tlowards the botlom of the diagram,
(d] Theyare deflected towards the top ofthe diagram.
10.4 The force axarned an a wira of 1 metre length carrying 1 ampere current placed at
right angle to the magretic eld s called:
{&) magnetic field intensity (b)) magnetic flux
(el magnetic induclion (d) none of these

Baam of
elorion
1o
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10.5 Theunitof luxdansityis

(@) MNA m (B) NAmM [epNmA™ (d)NmA
10.6 Amoving charged particie is surrounded by
(a) electric fiald only (b) magnatic fiald only

{c) both electric and magnetic field (d) nofeld
10.7 Magnelic {force on the charge g moving parallel to magnatic fiald with valocity vis

(a) gv B sinft (b) gwB () zero (dyiLE
10.8 TheunitNA" m" iscalled:
(a) weber b tesla (o) coulemb (d) none of these

10.9 Elecirons while moving perpendicularly through a
uniform magnetc field are:
(a) deflected towards narth pole (b) deflected towards south pola
(c)deflected along circular path (d) not deflected at all

10,10 A magnel is suspended from & spring. The magnet oscillates and moves in and

oul of the coil connected to & galvanometer. When the magnet oscllates. the
gaklvanometer shows:

{a) deflection to the lefi and to the right with constant amplitude
ib) deflected on one side
(c) no deflection
(d) deflaction ta the laft and right, but the amplilude steadily decreases
|. Short Answer Questions !
10.1 tis said that Lenz's law specifically applies lo induced currants é Spng
and not directly toinduce emf. Explain it briefly.
10.2 Asquare loop of wirg is moving through a uniferm magnetic fisld.
Tha normal to the loop s orientad paraliel to the magnatic field. S
Is an emfinduced in the loop? Give a reason for your answer.
10.3 Does the induced emfl alwaye act 1o decrease tha magnetic flux
through a circuit?
10.4 When a magnet is pushed into the solenoid, as shown in the = @
figure {a), tha galvanomelar indicales a small current, Why is the (a)
current produced? What will be the magnetic pole produced at
the left end of the solanaid?
10.5 A bar magnet falls through a fixed matal ring (Fig b). Will the
magnet fall with an acceleration of a freely falling body? Give
Feason.
10.6 Which of the two charged paricles of the same mass will be {b) E_.::-_: >
deflectad most in the magnatic field (a) fast moving (b) slow
mioving ?
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10.7 An electron and a proton are projectad into a magnetic field at nght angles 1o it with
acertain velocity. Which of the particles will suffer greater deflection? Why?

10.8 Can a single moving profon produca magnetic field?

10.8 Amagnetic field is necassary if thare is to ba a magnetic flux passing through a coil
of wire. Yet, just because there is a magnetic field does not mean that a magnetic
flux will pass through a cail. Account for this situation,

|] Constructed Response Questions E

10.1 Acharge is lying stationary between the opposite poles < il sigy
of two magnets. |s.a magnetic force exerted on it? Why?

10.2 When the switch in the circuit s cloged, a current is
established in the coil and the metal fng jumps
upward, Why? Describe what would happen o the ring ool
if the battery polarity were reversed?

10,3 The figure shows a coil of wire in the x— v plane with a =t
magnalic field directad along the y-axis. Around which .
of the three-coordinate axis should the coil be rolated -
in order to generate an emfand a currant in the coil? =
10.4 Is it possible to change both the area of the loop and =4
the magnetic field passing through the koop and still not -
hawve an induced amf in tha laop? Give reasan.
10.5 Does the application of uniform magnetic field to a ﬁ ¥
maving charged particle rasull in a change in
Kinetic energy of the particle? Explain. 7 o

K

10.6 A uniform electric field and & magnetic fisld act in the same direction, A proton is
projected, into the spaca, with a unifarm velocity in opposite direction. What will
happen to the proton?

10.7 A eonductor moves in a magnetic flakd when a current is passed through the
conductor. Would you expect the reverse effect ko occur? That is; would a curent
be produced if a conductor is moved across the magnetic fielkd?

108 Consider a conducting rod of langth L moving
with velocity v to the right as shown in the -] Corietyoting el
figura, Left ends of the conducting rails are i
connected to a bulb. Due to motion of the rod
through the magnetic field, an emf is
produced across the ends of the rod, This emf
gives rise to a current /. As & result, the bulb
lights up. Explain whera does the elactrical
enargy consumed by the bulb come from? I—*  Conduging rod

o
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10.9 What will vou do if you want to save a sensitive instrument from stray magnetic
fields?

|§] Comprehensive Questions [

10,1 Distinguish batween magnetic flux and flux density. How are thay related?

10,2 Find an expression for the force exerted on a current-carrying conducior placedin
auniform magnetic field.

10,3 Siate and explain Faraday's law and Lenz's law. Also describe factors affecting
the induced em,

1.4 Determing the force acling on a charged particle moving through a uniform
miagnetic field.

10,5 Whalis avelocily selector? Explain its warking.,

10.6 Explain how ferrofluids work?

'] MNumerical Problems E

10.1 Apositively charged panticla is projected perpendicularly into a magnetic fiald at a
speed of 1500 m s It experiences & force of magnitude F. At what angle 0 with the
field, the particle should be projscted al a speed of 2000 m &, so thal it
expenences the same magnitude of force? LAns: = 408

10.2 Electrons are accelerated from rast through a potential differenca of 15 kV in an
oscilloscope. The electrons then pass through a 0.35 T magnetic field that deflects
them io the desired position on the screen, Find the magnitude of the maximum
force that an electron can experienca, (Ans: 4.1 210" Nj

10.3 A sguare coll of side 15 cm each consists of 60 turns, Initially, it i located ina
uniform magnetic field of magnitude 0.8 T such thal plane of the cod is
perpendicular to the field. Tha coil is then tumed through an angle of 8 = 30%in a
time of 2 5. Determine the average induced emif. (Ans: 0.54 W)

10.4 Ametallic rod iz moving through a uniform magneatic field of 0.2 T. The emf inducad
acrossits ends is found to be 0B V. Hisreqguired toinduce an emiof 2.4V acrossits
ends, How much field strength is needead for this? (0BT

10.5 A copper ring has a radius of 4.0 cm and resistance of 1.0 ml. A magnetic field is
applied aver the ring, perpendicular to its plane. If the magnetic field increases
from 0.2 Tto 04T Ina time interval of 5= 107 s, what ks the current in the ring during
thisinterval? [Ans: 201 A)

10,6 Acoil of 10 turns and 35 cm” area is in a perpandicular magnetic field of 0.5 T, The
coil iz pulled out of the field in 1.0 5. Find the induced emf in the coil as it is pulled
ouk of the field, [Ans: 1.75=107WV)

10.7 A proton Is accelerated by a potential diference of 6+10° volts. It then antars

perpendicidarly in a uniform magnetic field 8 =1.0 weber m”. Find the radius of
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curvature of the path of the proton. m=1.67=10" kg, e=1.6=10"C.
(Ans: 11.16 cm)
10L& A proton enters a uniform magnetic field B = 0.300 weber m” in a direction making
an angle 45" with the magnetic field. What will be the radius of the circular path if the
velocity of proton is 10 ms™. (Ans: 2 46 107 m)
10.9Three idenfical conducting rods L, L, and L, 8 g Ry
ara maving in different planes with tha same spaads &
v, = v, = v, = 25 m 3" as shown in the figure. The
length of each rod is 60 cm, A constant magnetic fiskd
of magnitlude B = 0.5 T is directed along z-axis. Find
the magnitude of emf induced ineach rod and indicate
which and of the rod is positive, [(Red L jeml=0.75V,
andend a, (Rod L.} emf= 0 (Rod L) emf= 0]

4

10.10. An emf of 0.5 V is Inducad across the ands of a metal rod moving through a
magnetic field of 0.4 T. Il an emf of 1.5 YV has to be induced, what field strength
wiould be needed for that ¥ Assume that all other factors remain the same,

(Ans; 1.2 T)

7.11 A charged particle moves through a velocity selector 2t a constant velocity of
496 10°m s in a direction perpendicular to both E and B. If the magnetic flsld
sirength is 0.114 T, what should be the magnitude of electric field intensity so that

the particle moves undeflactad? {ans: 565 10°NCY) —~— *
A2 A current-carryving conducior PO of length 2 m iz placed - .
perpendiculardy to a magnetic field of flux density 0.5 T s
as shown in the figure. The resulling force on the i T g
conductor is 1 M acting into the plane of the paper. What o
is the magnitude and direchion of the currant? T »

[4=1

{(Ans: 148 Qo P)

L



Aftor studying this chapter, the studonts will bo able to:

< Distinguizh betwean inertial and non-inertal frames of referanca,

Descnbe the significance of Einstem's assurmption of the constancy of tha speed of ight.
Desoribn thid T ¢ constan then space and lirme become ralabive,

State the postulales of Special theony ol relativity

Explan gualitathvaly-and quantiiatvely the consaquancas of s pecial ralativity
Specifically in lhe case of

d.  Therelstvty of simultansity.

b, Thosguivalence habasen mass and anangy,

. Lengthcontraction,

d.  Temedilation.

8, Massincrense

£ Slate that epacetime s & mathematical model Inrelativity that treals ime &s & fourth dmersion of the
iraditional thres dimensions of space

(M can be haught of B8 a melaphorfeal shaal of paper 1hat ean berd, and when it bends it can cause
affects puch as atratching and comprassion sean when gravitationalweva s peas through objeots, |

G oA A

ﬂl the beginning of the 20th century, new experiments and theoretical calculations
revaaled that classical physics, based on Newlon's laws, could not explain phenomena
imvolving extremely small particles or very high velocities, This led to the development of
relatiztic machanics, which offered a mora comprahensive framework than classical
machanics and fundamentally changed our view of the universe, Albert Einstain's
Special Theory of Relativity, introduced in 1805, addressed these issues by proposing
that the laws of Physics are the same for all observers and thal the spaed of light is
constant, regardless of the observer's motion. This theory not only resolved the conflicts
between classical mechanics and electromagnetic theory but also revoluticnized our
understanding of tima, space, and mation, forming tha basis of what is naw known as
madern physics, This chapter will explore how Einstein's theory reshaped our view of
the universe and continues to infiuence our understanding of the physical world.

11.1 RELATIVE MOTION

Consider throwing a ball to your right. For someone facing you, this direction appears o
his left, This illustrates that direction is a relative concepl, Similarly, the stale of rest or
modicn of an object depends on the observer. Forexample, the walls of 3 moving frain
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seem slalionary o passengers inside the train but appear to be moving to someone
standing on the ground. Thus, we cannat definitively say whather an object is absolutely
at rest or in motion; gll motions are relative to the observer or fo the reference frame
being used, This becomes evident with the following example: An obzerver in a closed
train compartment uses the compartment as his frame of reference, To determine the
train's motion, the observer drops a ball and measures the horzontal distance travelled
by the ball, keepging the vertical distance the same in each case. Il is assumed thal the
vertical distance is coverad in “1”° saconds in all scenarios.

Case (a): Suppose the train is stationary. In that case, the horizontal velocity of the ball
will be zaro, and the horizontal distance travelled will also be zera. In this scanario, tha
observations made by the

obzerver inside the frain and
by someone culside the train
will be identical. The ball will 3 i
have fallen to a point on the
floor directly below the paoint

from whare it was drﬂﬂ'ﬂ'ﬂ‘d Obsarses in he irain Opgarar oulside ihe irin
{Fig. 11.1-a). e

Case (b): The train is moving with a uniform velocity v.. When the ball is released, it has
an initial horizontal velocity v, and behaves ke a projectile. It travels a horzontal
distance v f in time it takes for the ball to reach the floor, Since both the train and the
obzerver inside it are moving with the same velocity v, they both travel the same
harizontal distanca vi in the same Bima [ Therefore, the observer inside the frain
sees that the ball falls to a point on the floor directly below where it was dropped. In
contrast, an chserver cutside

the train will see the ball _ —»
following a projectile path,

as shown In Fig. 11.1{b).

Thus, chservers in  differant "
frames of reference, moving

with unifarm veloesty ralative oo erin the

; i .1 L >
b ﬂ.ﬂ:h.mhar' will § PO ) Ceserver outside the moving train
moticn differently. Fig. 11,116}

11.2 FRAMES OF REFERENCE

Wa have discussed the most commonly used Cartesian Coordinate System, In effect, a
frame of reference is any coordinate system relative towhich measurements are taken.
Forexample, the position of atable ina room can be described relative to the walls of the
room, making the roam the frame of reference, Similarly, the laboratory is the refaerence
frame for measurements taken there. [f the 2ame experiment is performed in a moving
train, the train becomes the frame of reference. The position ¢f a spaceship can be
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described relative to the positions of distant stars, making a coordinate system based on
thase stars from the frame of referenca.

Inertial and Non-inertial Frame of Reference

An inertial frame of reference is defined as a coordinate system in which the law of
inertia is valid, This means a bady at rest remains af rest unless acted upon by an
unbalanced force thal produces acceleration. Other laws of nature also apply in such a
systerm. For instance, a body placed on the Earth remains at rest unless an unbalanced
force acts upon it, indicating that the Earth can be considered an inerial frame of
reference. & body in a car moving with uniform velocity relative to the Earth also remains
at rest, so the car is also an inerial frame of reference. Thus, any frame of reference
maving with uniform velocity relative to aninertial frame is alzoan inertial frame.

However, il the moving car is suddenly stopped or

accelerated, the body inside no longer remains at rest, INsUch — pajativiey s the study of the
cases, the car is not an inertial frame of referanca. Therefore,  way in which abserversfrom
an accelerated frame of reference s a non-inedtial frame, maoving frame of referance
While Earth is rotating and revaolving, making it strictly e your perseplion of the
speaking a non-inertial frame, it is often treated as an inertial  "orie.

frame due to its relatively small acceleration,

11.3 SPECIALTHEORY OF RELATIVITY Do You Know?

The theory of relativily deals with how cbservers in
different states of relative motion describe physical &8
phanomeana. The special thaory of relativity addresses
problams involving inartial {non-accelerating) frameas of
reference. There iz another theory, called the general

thaory of ralativity, thal deals with problems invelving :ﬂiiﬂ' ht hiﬂ;ﬂﬁdg :s

frames of reference that are accelerating relative to oNe  gheervers. ane meving in the carwith
another. The special theory of relativity is based on tWo spead v and ofher standing on the
postulates, which can be stated as follows: road.

1. The laws of physics are the same in all inertial frames (Principle of Relativity).

2, The speed of light in free space has the same value for all observers,
regardiess of the state of motion of the source or the observer (Principle of
Constancy of Light).

The first postulate generalizes tha fact that all physical laws are the same in frames of
reference moving with uniform velocity relative to one another. If the laws of Physics
differed for obsarvars in relative motlon, those obsarvers could delarming which was
stationary and which was moving. Howewver, such a distinction does not exist, implying
that thiere is no way o detect absolute uniform motion.

The second postulate states the expenmental fact that the speed of light in free space is
auniversal constant, denoctedascic=3 = 10°ms"). Since ¢ is constant, space and time
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become relative. Forexample, if vou are sitling in a train moving at the speed of light and
you hald up a mirrar in front of you at arm's length, you will still sea your reflection in the
mirror, This is because, according to the principle of relativity, no experiment can detect
the constant motion of the train relative to the person inside .

Thesa simple postulatas have far-reaching consequences. Thay include phenomena
zuch as the slowing down of docks and the contraction of lengths in moving reference
frames as observed by a stationary observer, Some interesting resulls of the special
theaory of relativity can be summarized as follows, without going into their mathematical
deiails.

The Relativity of Simultaneity

If two events in different locations are observed by one observer to be simultanecus,
thay will genarally nol be obsarved as simullaneous by anothar obsarver in a differant
frame of reference moving relative o the first observer, In other words, whether two
avents are seen as simultaneous depends on the cbserver's frame of reference.

Consider a train equipped with light-oparated doors. The light switch is located in the
centre of the roof and is operated by a traveler standing in the middle of the
compartment, Whean the train is travelling at half the speed of light, the traveler lurns on
the light. The Eght travels forward and backward ai equal TP - =
speed and reaches both doors at the same time.
Consequently, the traveler sees both doors opening Ifyouare inaframe of referance
simuktaneously. Howsver, an observer outside the train m':ﬁﬁﬁgiﬂ
:II:II see the bhackkm :_:1:ran hH[ﬂ:ﬁ the frant d_n:nnn;. This is cies i uimfmn_ma. e
eoause the bac d_I:u:}r‘lE moving I:lwardath_e light waves, o oo wev to know. if vou are
while the front door is moving away from the light waves. moving orat rest,
Time Dilation

According to the special theory of relativity, time is not an absolute quantity; it depends
an the motion of the frame of raferenca.

Suppose an cbserver is stalionary in an inerlial frame and measures the ime interval
betwesn two events inthis frame. Let this time intervalbe §_Thiz is known as propes time.
It the: observer is moving with respact to the frame of events with relativistic velocity v, orif
the frame of events is moving with respect to the observer with a uniform relativistic
velocily v, tha time measurad by the obssrver will notbe L, butrather §, given by

{

[=—=2 e g G
[ v
VS
—
As the quanlity \'H - :: is always lass than one, so [ is greater than £, i.e., ime has

dilated or strefched due fo the relative motion of the observer and the frame of reference
of the evenls. This aslonshing resull applies 1o all tming processas—physical,
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chemical, and biolegical, Even the aging process of the human body is slowed by motion
atvery high speads or relativistic speeds.

For example, if a fraveler on a plane moving at 0.8 ¢ picks up and opens a book, the
event takes one second as measured by the traveler. Howewver, 1o a parson standing
ouiside the plane, the same event takes 1.7 seconds.

Length Contraction

The distance from Earih to a star measured by an observer in a moving spaceship would
appear smallerthan the distance measured by an cbserver on the Earth, In other words,
if you are in motion relative to bwo points thal are a fized distance apart, the distance
betweean the two points appears shorter than if you wera at rest relative to them, This
effectis known as length contraction. Length contraction occurs only akong the direction
of mation; no such confraction is obsarvad parpendicular 1o tha direction of moticn, Tha
length of an abject or the distance beiween two points measured by an observer who is
at rest relative to them ks called the proper length ¢ . If an object and an observer are in
relative motion with speed v then the contracted length ' is given by

Pk et o (11.2)

Letatrain thatis measured to be 100 metres long when at rest travel at 80% of the speed
of light {0.8 &). A parson inslde the train will measure its length as 100 meires. However,
a person slanding by the side of the frack will observe the train to be only 60 metres long.
Thiz effect of relativity, which is the shortening of length in the direction of motion, is due
ta length contraction,

Mass Variation

According to the special theory of ralativity, the mass of an abject is a variable quantity
thal depends on the object's speed. An object whose mass is measured at rest is called
its rast mass m,, will have an increased mass m when obsarsed o be moving at spoed
v. They ara related by

W
-

The increase in mass indicates the increase inineria that an object has at high speeds.
As v approaches ¢, it requires a greater force to change the object's speed.

2
As vaap L therefore, : oLy
G ot

Thus T —» oc

An infinita mass would require an infinite force 10 accelerata (1. Since infinlte forces ara
nat available, an object cannot be accelerated to the speed oflight ¢ in free space.

In our everyday life, we deal with speeds that are extremaely small compared to tha
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speed of light. Even Earth's orbital speed is anly 30 km 5", while the speed of light in free
space is 300,000 km s, This s why Newton's laws are valld In everyday situations.

However, when dealing with subatomic partides moving at velocities approaching the
speed of light, relativistic effects become very prominent, and experimental results
cannol ba explained withoul considering Einstein's equalions,

11.4 THEEQUILANCE BETWEEN MASS AND ENERGY

Aacarding o the spacial theory of relativity, mass and energy ara distinet entitias but are
interconvertible. The total energy E and mass m of an object are related by the
axNprassion:

R {11.4)
where m depends on the speed of the object. At rest, the energy equivalent of an object's
mass m, is called its rest mass energy E,. Thus,

E =mg
As mc” Is greater than m,¢’, the difference of energy (me’ — m,g’) is due 1o the metion,
and it represents the kinetic energy of the mass, Hence,

K.E =fm-m )&’
From Eq. 11.4, the change in mass mdue o change in enemgy AEis given by

A
A =—

=

Because ¢’ is a very large quantity, this implies that small changes in mass require very
large changes in energy. In our everyday world, energy changes are too small to provide
meaasurable mass changes, However, energy and mass changes in nuclear reactons
are found o be exacily in accordancea with the aforementioned equations.

11.5 SPACE-TIME IN RELATIVITY

Space s said o be a three-dimensional extent in which all objects and events occur. It
provides a framework to define the pasition and motion of various objects under the
influences of some ferce,

Time measures the sequence and duration of events. In the theory of relativity, ime is
nal absolute; it 15 considered the fourth dimension. For exampla, oscillatory maotion,
such as that of @ swinging pendulum, relies on fime to determine the frequency of
ascillations. Another examphe is fime dilation, a phenomenon discussed eardler in this
chapter, where time passas more slowly for an obsarver moving at extremely high
speeds compared to one at rest. The special theory of relativity explains that space and
time are related to each other. It describes how space and time are infleenced by gravity
and speead, such as the bending oflight around massive objects like stars,

Space-ime Is, In fact, a mathematical model thal unifies space-time into a single

continuum. Il is 8 concept usad to describa all points of space and time and their relation
to each other. According to Einstein's theory, space-ime is curved especially near
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massive bodies and for speeds
approaching the speed of light. We can
hypothetically visualize this as a fabric
sheet. If a heavy ball iz placed over this
sheel, it curves as shown in Fig, 11,2,

Obijects such as stars and planets cause
space-time o curve arcund themselves,
much like an elashc fabric deforms when
holding a ball. The more massive the
abject, the deepar the curve. Fig- ¥i2

Consequently, we do nol speak of a force of gravity acting on bodies; instead, we say
that bodies and light rays move along geodesics [analogous to straight Bnes in plane
gaamealry} in curved space-time, Thus, & body at rest or moving slowly near a massive

aobject would follow a geodesic toward that object 3

Einslein’s theory provides a physical piclure of how

gravity works. Mewton discovered the inverse square law
of gravity but explicitly staled that he offered no
explanation for why gravity should follow this law,
Einsiein’s theory also describes gravity as following an
invarse squara law (except in strong gravitational fields),
but it explains why this is 50. This 15 why Einstein's theory
iz considered an advancement over Mewton's, even
thaugh | encaompasses Mewlon's theory and vields the

same resulls as Mewton's theory in all bul very sirong
gravitational fields.

The bending of stadight causad by the Sun's gravity was

measured during a solar eclipse in 1918. The resulis m'ﬁ:ﬁfﬂﬁ“ﬁﬁ';m 5'-"';
malchad Einstain's theary rather than Newtan's, leading ngammzschmhmsdnanm
ta Einstein's theory being hailed as a scienlific trumph. way 1o Eath. We ses the star
Another success of Einstein's theory was the detection of N the apparent diraction 8,
grawilational waves, producad by some calestial evenls ;Tmﬂmﬂ: g'lﬂ{a?igfm
ceusing disturbances (squeezes and stretches) in the o angee which e founid 1o be
curvature of space-time. These waves weare detected in  the same dunng the solar eclipse

2015 and announced in 2016, of 1919,

Example 11.1: The period of a pendulum is measured to be 3.0 s in the inertial
reference frame of the pendulum, What is its period measured by an obsernver moving
alaspeedof 0.95 ¢ with respect to the pendulum?

Solution:

£.=30s, v=0.95¢ t=7?
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Example 11.2: Abar 1.0 m in length and located along x-axis moves with a speed of
0.75 ¢ with respecl lo a stationary observer, What is the length of the bar as measured
by the staticnary obsener?

Solution: For your Informsation
f=1.0m , v=0.765¢ , =7 The fasier you ane moving of diose
o a strong source of grawily, 1he

|| # I s lime $ar o,

Using =l 1-% et et e

R—
075 ¢ et
i -1.ﬂmi¢1-tT—f =1,0m % J1={0.75)" = 0.66m

Example 11.3: Find the mass mof a moving object with speed 0.8 c.
Solution:
m

Ll:slﬂ-lﬂ il = ..
% [ iteresting Information _|
'1__
(&

H you-are oh somé spoceship

moving extrarriely 13t inrough

or m = LE=L_=1.E?HTQ space near a bisck hole like in
4 (08ef  1-{0BY mavie, “Intersteller” then you
o could miss T years on the Eanh in
evenyhoar,
or m = 1.6Im,

Hypothetical Example of Space Time

Leat a spaceship be travelling to a star with half of the speed of light. Let it takes wight
years to reach to the star, from the point of view of the observar on the Earth. From the
Earth's point of view, the clocks on the spaceship are moving slowly, so that less time
passaes on the spaceship comparad to the Earth.

For the spaceship occupants, the length of ihe joumey has coniracted which they cover
inless time. The occupants of the spaceship record ¥ vears 1o reach their destination,

rather than B years.,
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@ Multiple Choice Questions [

Tick (+) the correct option:

11.1 Relativislic machanic yvields resulls different from chissical mechanics for
abjects moving with:

(a) low velocity {b) velocity equal to that of sound waves
(¢} velocity graater than sound waves (d) velocity approaching that of light

11.2 if an observer is moving in the same direchion as & sound wave, the velocity of the
wave seams o be:

{&) more {b) less
{c) constant {d) sum of the two velocities
113 ¥ the rest mass of a particle m, increases o m due 1o its high spead, then its
kinetic energy 5!
(a) 112 m¢’ (b} 172 m (e){m-—m )¢ (dy12{m-m, )¢

1.4 The spead of beam light of a car whila moving with high speed as compared o
= rast position 4

(a} greater b} iess () same {d} zero
11.5 A photon is a particks of light. What |s its mass whan it moves with 0.9 ¢7
(@) 9.1 x 10" kg (b) 1.67 x 107 kg (c) 1.67 x 10° kg (d) Zero

|] Short Answer Questions [

11.1 Whatis meant by inertial frame of reference and a non-inerial frame of reference?
11.2 What are the bwo postulates of special theory of relativity?

11.3 Descrbe why it is impossibla for a matenal parhiclke to move with speed oflight.
11.4 Doestheory of relafivity contradicts MNewton's laws of motion? Explain briefly.

11.5 Whatis meant by proper time, and proper langth?

1.8 Whatis meant by relativistic mass, length and time?

11.7 Why mass of a moving objectincreases?

1.8 Almotion are relatives. Does space-time s absolute? Explain briefly.

11.9 Explain that speed of fight is an ultimate limit for any object.

11.10 Give examples where the results of special theory of relativity have baen varified.
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|! Constructed Response Questions E

Speed of sound is affected by relative molien between the observer and the
source, Does this apply to speed of ight as well? Describe briefly.

12 it ever possible to see a star moving away from us at a uniform velocity equal to
the velacity of light?

If thee spead of light is just 50 m 5" how would evary day events appear to?

Ii the speed of light were infinife, what would the equations of special theory of
redativity reduce to?

According to Einstein's equation; £ = mc’, is it possible to create a single eleciron
from energy? Explain.

[@___Comprehensive Questions
Vi'hat is meant by the "frame of reference™? Distinguish between inerial frame of
referance and non inertial frame of referance by giving examphes.

Describe the Einsiein’s mass-energy equation; why cannot we observe its efiects
in everyday life? What are itz significant consequences? Give axamples.

State the Einsten's concept about the space-tima, Describe the view of gravity
according tothis concept,

1 'Numerical Problems ’!
An electron is accelerated toa speed of 0.995 cwhich passes down an evacuated

tube 500 m long. How kang will the tube appear o the alectron? (Ans:-5dm)

Aneutron, being not a stable particle, disintigerates in 20 minutes on the average.
How bong will it seam Lo exiztif shoots out from a nucleus with a speed of 0.8 &7
vAns: 33.3 min)
Aspaceship is measurad 100 milong while i1 2 al rest with respect to an obsaervar, if
this spaceship now flies by the chserver with a speed of 0,98 ¢, what length will the

observer find for the spaceship? [Ans: 14 m)
The rest mass of an electron is 9,11 x 107" kg. Calculate the correspanding rest-
Mass energy. (Ans: B.2x 10" Jor0.51 MeV)
An electron is acceleraled to a speed v = 0,85 ¢, Calculale its total energy and
kinetic energy inelectron volt. (Ang: 0.897 Mey, 0.459 MeV')
Atwhat speead  wauld tha mass af a proton in a particle accelerator be triphed?
(AnzD943 o)

The period of pendulum is measured to be 3 s in an inerbial frame of reference,
What will be the period measured by an observer in a spaceship with a8 constant
spaed of 0.95 ¢ with respect to the pandulum? (Ans: 9.8 )

Hypothetically, if a ball of mass 0.5 kg is projected with a welocity of 0.9 ¢, what will
be s mass in flight? [Ans: 1.15ka)




After studying this chapter studants will be able to:

& glats that nuclecn number and charge are conserved In nudear processas

& describe the composition, mass and charge of a-, B- and wradiaticns [both B- (elections) and
f+{posdrons) are inchidad)

& Euaplain Ihal an anliparlicks has fhe same mass bul oppesile charme o' he carespanding partice
[giva tha exampla bal a posiiron ks tha antiparicle of an slaciron|

& glate that {slectron| antineulrines are produced during B-decay and {sheciron) naulrinos g
produced during B4 decay

4  Eaplain that o-parices have discrete anergies but Bhat G-particles have a conbmuous rendgs of
Energies because (ant ] newring are emiflad in f-decay

% Describe quanks and antiquarks {as & fundamental Inclding that there ane six flavors (types] of
qQuiark: up, down, stranga, cham, lep and botiam)

dascriba protons and nautronsin terms of iheir guadk composition

slate thal & fadran may be ellher § aeeon (eonsistng of e quarka) oF o messn (consisling of
one quark and an antiquark]

describe the chamnges o guark composition thet teke place dunng - and B+ decay
state ihat electrons and neuirings am furdiamental particles called Bptons

State, W, Z, giuan, and photons as fundamental parlicies called axchangs paticles o foroe
TS

State the Higgs Boson as 2 fundamental particle which s resporsible for the particle’s mass,
Explain that evary substiom|o paricla has a comaspanding antipartcie [ihat Has the sama mass as
a given particle but opposite electic or magnellc proparties sccording tehe Standand Model of
Partichs Plysacs |

Explain that there are various contending theoarias about what ‘mass’ and 'force” are generated
from [e.g. ihat These are generaled from quantum flekds when they are energleed, or [Fom mulll
dimensonal “strings’ thal vibrate in highes dimensions ke give nse & particles (no further lechnical
kmowledge bawond thaza simpla descriptions is aspactad at this laval )]

& Ihsslrate ihat anliparicies usually have The same weight, bl opposils charge, compiased b e
mattsr Gountarpans

4 State that most ol the matlerin the absendaile unlverse [Bmalter
# Describe the aspmmeatry of matier and antmattarin the universe 8580 uraohed mystiany

& Deseribe annihlalion resclions [4 parbcle meals s coresponding antiparicle, they undengs
annihilation reactions & which eithar all tha mass & convertad (0 heat and ligh! anargy, of somsa
miEss 5 e over in thie formn of new sub-atomic parbcies, |

* %

* H & % @

L]
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i @ believe thal all atoms are made up of neutrons, protons, and electrons. The
¥ ¥ antiparticles of these threas parlicles are also known. The positron (a positive
electron), the neutring, and the phaton are also known, By the end of 1880s, many new
types of particles similar to the neutron and the proton were discovered, These were
called mesons whose massaes wena mosty less than nucleon masses but more than the
electron mass, Afterwards, other mesons were also found that have masses greater
than nudeans. Physicists stared to ook for more fundamental particles which must
have even smaller constituents which was later confirmed by experiments. These werg
named as guarks, We will discuss in this chapter, the basic building blocks of malter.

12.1 STRUCTURE AND PROPERTIES OF THE NUCLEUS

The atomic nucleus comprizes wo types of particles: protons and neutrons. 4 praton is
the nucleus of the simplest atom, hydrogen, called a protium, The proton has a positive
charge of the sama magniiude as that of the electron (1.6 x 107" C) and its mass Is
1.67 x 107 kg. The neufron, whose existence was pointed out in 1932 by James
Chadwick, is elecirically neutral as its name suggesied and its mass is nearly the same
as that of proton. Mow we can say that the nucleus has two types of particles {neutrons
and protons) called nucleons.

A hydrogen nucleus consists of a single proton howsaver, the nuclei of all other elemants
consist of both naulrons and prolons. The different nudel are called nuclides. The
number of protons in a nuchewus is called the atomic number represeniad by the symbol
£, The total number of nucleons, the sum of nautrons and protans, 15 represantad by the
symbal & and is called the atomic mass number, or simply mass number. It is written
as N=A-Z (12.1)

whera N reprasents the neutron number.

In erder to specify the given nuclei, the symbol X is commonly used as X, Whare X is
the chamical symbel for the element, Te indicate the mass of atomic particles, Instead of
kilogram, unified mass scale (u) is generally used. By definition 1u is exactly one
bwelvath the mass of carbon” alom (1u = 1,6606 x 107 kg = 931 MeV), In this unil the
mass of a proton is 1.007276 u and that of a neutron is 1.008665 u while that of an
elactron 15 0,00055 .,

For a particular atom (e.g., carbon), nuclel are found to contain different numbers of

neutrons, aithough they all have the same number of protons. For example, carbon

nuckei always have 6 protons, but they may have 6, 7 and 8 neutrons. Nuclei that contain

the same numbar of prolons bul different numbers of naulrons are called sotopes.,
14

Isotopes of carbon are C, C, and '/C, amongst them "C and C are stable but |'C is
unstable and decays into nitrogen alongwith the emission of (i and neutrino particles.
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12.2 FUNDAMENTAL FORCES OF NATURE

To understand the structure of the nuckeus, it is important 1o know the nature of the
forces that bind the nudeon logether, But before that, we should know the basic forces in
nature. Despile the apparent complexity within the universe, all interactions in the
universe are governed by the four basic forces known as fundamental forces, These
forces control how objects move, interact and behave al differant scales from tiny atoms
to massive galaxies. The four fundamental forces are gravity, eleciromagnetism, weak
nuclear forge, and strong nudlear force.

Gravitational force or gravity i one of the four fundamental forces of natura. ILis the
weakest of the four but it is a long-range force. It is an atiractive force and arises due to
the gravitational interaction between the bodies, The gravilational force between two
bodies is proportional 1o the product of their masses and inversely proportional to the
square of the distance between them, When considered for massive objects, such as
the sun, or giant planets, gravitational force is considerad to be significant as the
masses of these objects are large. However, on an aftomic level, this force is considered
to be nagligibly weak,

The electromagnetic force i3 responsible for electric field and magnetic fiekd
interactions. Like the gravitational force, the electromagnetic force follows an inverse
square law but is much stronger than gravity. It governs a vast range of phenomena,
from atomic structure and chemical bonding to elecinicity, magnetism, ard Rkght
propagation, James Clerk Maxwell (1861) formulated a sel of four fundamental
eguations that unified electricity and magnetism into electromagnetism. These
equations describe how electric and magnetic fields interact and how electromagnetic
waves propagate, Thesa equations showed that electric and magnetic fialds ara nol
separate forces but are two aspects of a single electromagnetic force,

Dut of the four fundamental forces, nuclear forces ara the strongest atiractive forces.
Electromagnetism holds matter together, but there was no explanation on how the
nucleus is held together in the atom, If we only consider the forces of electromagnetiam
and gravity, the nucieus should fiy off in different directions, The stability of tha nuchaus
impfies that another force should exist within the nucleus which is stronger than the
gravitational foree and electremagnetie » e
force. This is where nuclear forces
come into play, Strong nuclear forces Eiice

ara responsible for holding the nucled of Strength
gtoms together. They only exist inside {compured fn whrong forcs)
the nucleus. So, we call them as shon- Gravity 109 o

range forces. The strong nuclear force

: T <10 "% m
acls as an attractive forca batween all
nucleons, protons and neutrons alike. Elsciromagnatic 10 @
Thus, protons atiract each othervia the  Strong 1 <10 "% m
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strong nudear force at the same time they repel each other via the electric force. A
neutran, being electncally neutral, can attract other neutrons or protons via the strong
nuclear force. Weak nuclear forces are responsible for the radicactive decay,
particularly the beta decay and interactions invalving neutrino. Unlike the other
fundamental farces, the waak force can change the identity of particles, making it
essential for processes like nuclear fusion in stars and the decay of unsiable alomic

nucked. The relative strength and range of the above four forces are given in Table 12.1.

12,3 MATTER AND ANTI-MATTER

It was predicted by Paul Dirac in 1828 that the
fundamental particles have their antl-partides, Thea
rest masses of the anti-particles are the same as that of
their corresponding particles bul with opposite
charges. For example, positron is the anti-particle of an
electron. I is represented by 8", The rest mass of the
positron is the same as that of an electron but it carmes
positive charge with magnitude the same as that of an
electron, It is noted that the positon was the first
dizcovered anti-particle by Anderson in 1932 in a cloud
chamber experiment. This was first experimental
discovery of an antl-particle. After that a lot of anti
particles were discovered. Usually, the anti-particle are
represented by a letter with a bar over it, e.g., anti-
profon is represented by antineutrina by vand so on.

The quarks and leptons have been recognized as the
fundamental particles also known as elementary
particles among the oo many discovered partides.
These siementary particles have also antiparticles,

For Your Informatian

1A partiche acceleralor = 8 huga
mzchire thal sccalarates charged
particles, such ag elactrons,
protens, o loms, tooextramely high
anergles snd speads, approaching
ihe spead of lighl.

2 Linear Accelerators, Cyelolrons
and Baefatrons are imporiant
partsdle accederatons,

Imteresting Information

For their work on this discoveny,
Dirac and Anderson recssved (ha
Mobel Prize i Phyesca-Dirac in 1933,
and Anderson in 1938, [a 1855,
Sagre and Chamberdain discoeened
antiproton using a pariicla
icglaraiar and werg awarded e
Nobed Prize in physics in 1858 for
theirdiscovary of anb-proton,

(i) The cosmic rays ane high-energy panicias coming from the outer-space with unknown scurces, Their
saurca may ba the sun or the other siars. These parices consisl mostly of protons, neutrons and
heavier muechel, which are conlinually bombarding the Eanh, When ihege parliches inferact with the
atoms of the gases of the Earth's atmosphere, thay produce showers of secondany particles which

rain o on us all the Bme,

{1} ‘Wnen nuclel of unstabls radicactive elemant sey 235 U undargo figalon reactions In the nuclesr
reaclors, they amit a waraty of padides, such as newdrons, peiings, o-paicles. pholons,

edectrons and positrons,

{m) When the chargad pardickes; such a5 edactmns and protons ane accalersted by an accalersior and
then bomband tham an the st mataial, which is hdrogan, these acosierated changed panickas
may also colide head-on with eech other. A& a result, the daebris from thesa reaciions coniain

i Flchs like paoing, kistheg, muGng and o amliprolans,




Pair Production

Pair production ocours when a gamma ray photon (high energy photon) passes nearby
an atomic nucleus. As a result, an electron-positron pairis emitted as shown in Fig. 12.1.
The presence of a third pariicke, such as a nucleus, is necessary o consarve linear
miomentum, According to the law of mass-enargy equivalance, the minimum anargy of a
photon for pair production must be equal o the sum of the rest mass energies of the
created particles. The rest mass energy of the eleciron-positron pair is
2m.c” = 1.02 MeV which has been verified experimentally. A gamma ray photon with
energy less than 1.02 MeV cannot produce an
electron-positron pair wheraas a photon with <

energy greater than 1.02 MeV creates an The pair production cannol take place in

electron-positron pair and the excess enemny ::i:‘“ :;ﬁ:ﬁ;‘m peY p;ﬂil;:ﬁml ml

goes into the kinelic energies of the particles.  gyjgey fike an atomio nucleus which can
The process of pair production satisfies the ©xperience some recoll during the coliision

. process o corserve the energy and fhe
W AEany m raluirre '
Eln;::lm servation of chergs, momaniumand B

Annihilation of Matter

It i= the opposite process of pair production. For example, when an electron and a
positron interact to each other they annihilate into two gamma ray photons as shown in
Fig. 12.4. Tha reaction can ba written as

g +ve - y+ty
The energy of each gamma ray photon is 0.51 MeV which is equal to the rest mass
energy of an electron or a positron, i.e. E=m.c’. In an annihilation reaction energy and
momentum are conserved, Besides the electron and positron annihilation, the
annihilation reactions of other partickes and their anti-particles can also be carned out
£.[.. proton and anfiprotan, lepton and antilepton, quark and antiquark, etc.

¥
Figure 12.1: A high energetic photon Figure 12.2: Fusion of electron and
intaracting with a nuclaus and disappears poEitron

inte an slectron and a positron pairs,
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High energy collisions between
the particles at CERM have
revesled that some mass of
calliding particles is chamged
o electromagnetic radiation
according to Einstein’s equation
and left over mass appears in
the form of new sub-atomic
particles.

Fhguee 12,3: & high engngetic pp colllsion producing 18 naw
parlicias.

12,4 RADIOACTIVITY

It has bean observed that the nuclei whose atomic numbers are grealer than B2 are
found naturally unstable, these nuclei spontanagusly emit radiations, Such nuclei are
called radioactive and the amission of radiation is known as natural radioactivity, These
radiations are of three types, a-particles, B-particles and y-radiations. Unztable isctopes
can also be produced arfificially in the laboratory by nudear reactions, This ocours when
a stable element is bombarded with high-energy particles, such as neufrons, protons,
alpha parlicles, orgamma rays, causing it to become unstable and emit radiation. This is
called artficial radinactivity and radioactive isolopes ara named radicisotopes or
radionuclides.

The o-partickes, f-particles and y-radiations are fraversed differently when passed
through the electnic field as shown in Fig.12.4. itis seen that a-particies deflect towarnds
the negative terminal of the electric figld, showing they have a positive charge. The a-
particles are emitted al high spaads, typically a few percent of the speed of light.
However, a-particles can travel only several centimetres in the air due {o their large
mass, The f-particles deflect towards the positive terminal of the electns field, showing

Lead block

i1 rayS

Radhnacire subsianie Electrcally chae e Fhotographec / |
HOES ko

Figure 12.4: The thrée radicactive radiations, sipha. beta and gamma,
e — _—
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they have a negative charge. The deflection of B-pariicles is more than the a-particles,
proving that they are lighter particles than a-particles. The [-particles are fast-moving
elecirons and move with speeds up to 0.89935 of the speed of light, The y-radiations
passed through the electric field withouwt defiection, showing they have no charge. Thiey-
radiations are electromagnelic radiations which consist of phatans. They move with the
spead of light with the highest penetrating power but the lowest ionization power.

The process of emitting o-particles, B-particles and y-radiations from the nudleus is
called a-decay, B-decay and y-decay, respectively, and are discussed below,

Alpha Decay

If the nucleus has more protons than the number of neutrons, the electrostaic Toroe of
repulsion becomes greaier than the strong nuclear force of attraction. In this case, the
nudeus becomes unstable and emits alpha particles in radioactive decay, An a-particle
is equivalent to a helivm (He) nucleus which consists of two profons and two neutrons.
This means the nuclaus loses two protons and neutrons in the o-decay. Hence the
atamic number £ decreases by two while its mass number & decreases by four. Alpha
decay can be writlen in generalas

s, U0 £ | (12.2)

Here [X is is the parent nucleus which decays into the daughter nucleus _,""_.J-: and He is
the alpha particle. In the a-decay, it iz experimentally obsarved that the number of

nucleons (A) and elecinc charge are conserved, Below
is an exampla of n-decay:

A radium-226 isotope | H:,,F!:En ) emils an alpha parlicle
113

and decays into adaughter nucleus radon-222 [, Rn L

ﬂ'“ga =t ﬁgn +:HH .................. {12.3)
el

In the above nuclear reaction, the daughter nucleus { =, Rnjis different from the parant
nudeus{ "f'f,Ha 1. This fransition of one element into another is called the transmutation
of the elements. It is exparimantally found that the mass of the parant nucleus is greater
than the total mass of the daughter nudeus and the mass of the a-particle. Thus the total
mass-energy (E=m¢’ | of the decay products isless than the mass-enemy of the eriginal
nudida, This difference in mass-anargy is callad the disintegration energy Q. or tha Q-
value of the decay.

Beta Decay
There are two types of f-decay, beta-minus decay and beta-plus decay.
(y p-Decay

Some nuclides have neutron-to-proton rafio (N/P) too large and are the source of
F=decay. The B-particles are nol the arbital electrons but they are created within the

nucleus at the moment of emission. Inthis process, a neutron in the nudleus decays into
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a praton and an electron, plus another particle called antineufring which is the anfi-
particke of nautrino, The neutring s denoled by a Greak symbaol v (nu) and antineutring
iz denoted by a barover the v. The decay process is given by the following relation:
i+ p *le+ ¥

Dne of the neutrons changes to g proton and in order o conserve charge it emits an
glectron, These electrons are called beta particles, However, they are indistinguishable
fram orbital electrons. Both the neutring and the anti-neutring have zero charge and
very small mass, which is why they are very difficult io observe when passing through
the matter. Na nuclecns are lost when a B-particle is emitted, and the total number af
nucleons Aremains the same butthe mass number 2 changes. Beta decay process can
be written as:

;'}; - I_";x + %8+ ¥ For Your information

. - Tha nauiring was first proposad
From the above equation, it is clear that the parent Wolfigang Paull in 1mhm?ﬂ
element of atomic number £ is transmuted 1o another  apangy conssrvation in the beta-
element of atomic number (Z+1). An example is the  minus and beta-plus decays, Lates
isolope of thorium, which is unstable and decays into "'__" m“‘-‘l:"'“&"‘r datected by
: PR [ | ' & an , Sowan in a
protactinium by beta emission. The reaction is hig! AP Mo eRBIaFON

represented as: this discovery, F. Ralnes raceived
ATh— Pa + la+ the Mobel prize in 1995,

(i) p'-Decay

There are also nudides that have neutron-to-proton ratic (MNP} too 2mall for stabllity and
decay by emitting a positron instead of an electron. The positron (e+) has the same
mass as the electran but it has a positive charge. The pasitron (s the antiparticle of the
glectron. In this process, a proton in he nucleus decays into a neutron and a positron,
plus a neutring, The generalized decay is given below:

A 20K +la+ v
An axample of a decay of Meon into Flouring by emitting positron and neutring is:;
nHe — " o+l

Energy of Alpha and Beta Particles in Radicactive Decay

In both o-decay and B-decay, for a particular M
radionuclide, the same amount of energy is
released, In a a-decay of a particular radionuchide,
every emitted a-particle has the same sharply
defined kinetic energy, When the number of
a-particles is plotted against kinatic anergy, thera
are distinct spikes thal appear on the graph as
shown in Fig. 12.5. This demonstratas that
o-particles have discrete energles.

Wi of a-paniclas (h)

| | S
Einalic Ensrgy {av)

Figura 12.5: Discrate enamy values of a-paricles
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However, in the case of F-paricle emission, A
energy s shared between @-particle and anti-
neutrina In varying proportions. The sum: of
electron {or positron) energy and the ank-
neutrina's (or nautrina's) energy, however, in
every case remaing the same. Thus in B-decay,
the energy of an electron or a pasitron may
ranga from zero toa maximum value, When the >
number of B-paricles is ploited against kinetic Farsatic Enangy (e

enargy, the graph shows a curve as shown in Figure 12.8: Conlinuos speckrm

Fig. 12.6. Thiz demonsirates that beta parlicles of f-particles

{electrons or positrons] have a continuous range of snergies, The pnnciple of
consarvation of momentum and energy apples in both alpha and beta emission,

{iiij Gamma Radiation

The emission of vradiation from a nucleus is generally represented by this equation:
% S 4% + ¢ radiation

where ,T.'H:' represents an exclted nucleus while "X shows ground state of the nucleus.

Ma. al f-patichas (M)

Tabbe 12.2: The surnmary of nature of alpha, bela and gamma radiations

Chara =partickes Yrays
1, hadure LT i lrons of potilrons (1413
charge 2@ nuclous of charge $a - M wares Traim exdibed
i iuicled wilh necharge
¥ Typical Radon-222 IStrontium-g4 Cobalt-60
SOUMeS
Bbout 107 Pbout 107 [Bbout 1
3, Fonzation
{ion peirs mm' in sir}
4. Ranga in ar ] Bevaral mats
avaral
mt‘ﬂ IOhEVE Inverss squans [aw
5. Abmorbed by l&papﬂ' -5 vy of &) shest 1-10 em of lead shaat
- it with e fvarablaenargy Wariable anergy
Ene ;
. Bpeed W ms ST et ms 3% 10 ms

12.5 FUNDAMENTAL PARTICLES

By the term fundamental particle, we mean a particle that has no internal structure,
which means it is indivisible., Presantly, the fundamental constituenis of matter are
conzidered 1o be quarks (protons, neutrons and mescns are made up of quarks) and
leptons (including elecirons, positrons, and nautrinos). They are considered the basic
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building blocks of matter.

When a nucleus iz smashed in an ulira high energy pariicle accelerator, or two hight
energy particles are collided, entirely new types of parlicles are created which
apparanthy do not exist within the atloms of the ordinary matter. They are the oulcome of
the violent collizions needed to probe the basic structure of matier. More than a hundred
new parlicles have been identified to be dassified into families with similar properties,
Many of these were accounted well with the scheme of theoretical physicist whilke the
rest were named “strange paricle”. They are always created in pairs, .g., when a pion
(') eolides with a proton, two strange particlas K and A° are created. The nuclear
reaction is

Trpa K+ A

All particles spin on their axes and the spin of charged pariicles makes them tiny
magnets. The characteristic spin of electrons, prolons, neutrans and is 112 and the spin
of photon is 1 and of pions is aken as zero. Half spin particles obey the Pauli’s exclusion
principde which says that only one parficle of 8 kind occupy a given quantum state,
These particles are called "fermions”, Tha particles with zero or whole number spin do
not obey this principle. They are called "bosons™ as they obey Boze-Einstein statistics.
Further major classifications are;

1. The nuclesns and the heavier particles such as A” and K which decay to nuclecns are

called "baryons” (heavy)

2. Tha muons do nol interact strongly with nucleons, and ara called leptons (small)
along with the electrons, tau and neutring.

Bath of the f-decay {beta-minus and beta-plus) processes provide avidence that the
profons and neutrons are not the fundamental particles. By the 1960s many new lypes
of particles similar to the neutron and proton were discovered, as well as many
"midsized” particles called mesons whose masses ware mostly less than nucleon
masses but more than the electron mass (other mesons, found later, have masses
greatar than nuclaens), The strongly attractive particles are called n meson or pions
while the weakly interacting particles were named 1 mesons or mMUons.

This discavery led to the conclusion that these paricles could not be fundamenial
particles, and must be made up of even smaller constituents , which were given the
Name guarks,

Hadrons and Leptons

Farticles can also be classified based on the four fundamental forces that act on them.
While the gravilational force affects all particles. its impact at the subatomic level is so
minimal that it is generally disregarded at the sub-atomic level, The electromagnetic
force, which acts on all electrically charged particles, is well understood and can be
considerad when necassary: however, Inthis chapter, we will largely lonore ts effects.

FParticles can be broadly dassified based on whether they inieract via the strong force,
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Thosea that experience the strong force are known as hadrons, while those that do not,
are called leptons, Examples of hadrons include protons, neufrons, and pions, whereas
glectrons and neulrinos are classified as laptons,

Hadrens are composite subatomic particles that can be further divided info fwo broad
categories: some are bosons, referred 1o as mesons such as pion, while othars are
farmions, known as baryons, with profons and neuirons being the key examples.
Barvons are made of an odd number of guarks (usually three quarks), and mesons are
made up of an even number of quarks (usually two quarks: one quark and ong
antiguark .

The leptons interact only through weak or electramagnetic interactions. No expariments
have yel been able (o reveal any internal struciure for the keplons; they appear to be
truly fundamental particles that cannot be splt into smaller particles. All known
leptons have spin ¥4, so they all are fermicns. The six known leptons are grouped
asthree pairs of paricles as shown in Table 12,3, Each pairincludes a charged paricle
(&, mr, I), its associated neutrino and corrasponding antl-particlas, Charged leplons can
combine with other pariicles o form various composite pardicles such as aloms and
positronium, while neutrinas rarely interact with anything, and are conseguently raraly
abserved. The best-known of all leptons is the electron.

Family Particle Symbol [MaVic") Charge g | Antiparticle
Electron o' 0.51 -1 ol
EIBCION | g ciran neutring Ve o =107 o Vi
Mucn ! 106,77 -1 et
Muan Muon neutring ¥ » 12107 i) Fm
- Tau ! 17T =1 1
i Tau Meulrino v » 12107 i (o

126 QUARKS

In 1864, M. Gell-Mann and George Zweig proposed that none of the hadrons, not even
the praton and neutron, are traly fundamental, but instead are made up of combinations
of three more fundamental enfities called quarks or quark flavours. Quarks are
considerad to be truly fundamental particles, like leptons, Three guarks originally
proposed were named up, down, and strange, with abbreviations u, d and s,
respectively. Presently, we are aware of six quarks, just as there are six leptons-based on
a prasumed symmelry in nalura, The other three quarks are called charm, bottom, and
top (c, b, t}. These new quarks can be distinguished from the 3 onginal guarks {see Table
12.4), All quarks have a spin and an electric charge (& fraction of tha previously thought
smallest charge @ on an electron). Quarks ara invisible. They never appear on their cwn.
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Al hadrons are considered to be

:
:

made up of combinations of guarks S
[plus the gluons that hold them Pﬂmmm a) vic) Particle| tg)
together), and their properties are
described by looking at their quark up J 2 £ = | .2
content, Mesons consist of a 3 3
quark-antiguark pair. For example. Down oo 10 5 e
an mesonis a ed combination, A o 3 3
can be made of ul). +E 1500 N 2
Each baryon, on the other hand, —nam = a % ]
consists of three quarks, such a8 Syrange al 1| 20 = |
The proton has a quark composition 3 _3
of ud and 5o its charge quanium Tup i +E 175000 F _E
number is 5 5 : 13 4o ?
- - —f Bottom ] | h I
gludd)= 3+ 5 H-3z) =¥ 3 A e

Meutran has a guark composition of
udd and its charge gquantum Naution

Proiai
number s

2 1 1
uddj= —# (==} # [==}=10

Mescons are quark—antiquark pairs. Consider the meson »”, which consists of an up-
quark u and an antidown quark o, We see that the charge gquanium number of tha up
quark is +2/3 and that of the antidown quark is +1/3. This adds nicely to a charge
quaniumnumber af +1 forthe m° meson, thatis, glu) =273 + 1GE=+1,

Not long after the quark theony was proposed, it was suggested that quarks have another
property (or quality) called colour, or "colour charge” (analogous o eleclric charge).
According to this theory, each flavour of quark can have one of three colours, usually
designated red, green, and blue. Note that the names “colour” and “flavour” have nothing
tor do with our sansas, but are purely whimsical—as are athar names, such as charm, In
this new fielkd. The antiguarks are colored antired, anligreen, and antilue. Baryons are
made up of three quarks, one of each colour, Mesaons consist of a quark—antiquark pair of

Prodon P Aniliproton
R
o )
“"m.___.-*"'r
Figure 12.7 (a); Golouiess Daryons: Figure 12.7 (b & colourless anlibaryons:

blue + red + graan = whita antidua + anlired + anilgrean = white
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a particular cotour and its anticolowr, Both banyons and mesons are thus colourless or
white, Each quark is assumed to carry & colow charge, analogous to an electric charge,
and the strong force batween quarks is referred 1o as the eolour force. This theory of the
strong force is called guantum chromedynamics or QCD, {o indicate that the force acts
between colour charges (and not between, say, electric chargas). The strong force
batween two hadrons is considered to be a force betweean the quarks that make them up.

Beta Decay in Terms of Quarks T E—

When a neutran in the nucleus decaysinto a proton and an A neutron is stable only nside &
electron (beta particle), an antineutring is also produced in qucleus. Free neutons decay
the reaction and the decay process s given as with a halt-ife of 900 &,

n —+.p+le+ ¥

Now, we can identify that a meutron with compasition udd
can convert into a proton with composition uud by
changing a down quark into an up quark. The fundamental
decay process can now be expressed as

d —» u+a+y
-1

Thus, as our understanding of the fundamental nature of matter deepens, wea can
analyze familiar processes at increasingly intricate levels, The quark model not only
anhances our comprahansion of particle siructures but also provides ingight into thair
interactions.,

12,7 HIGGS BOSON

Fundamental particles are considerad o be the six quarks, tha six leptons and tha
gauge bosons (Higgs bosons), which are the camriers of the fundamental forces.
Leptons and quarks interact with each other by sending and receiving bosons, For
example, electromagnelc interactions occur when bwo positively charged particles
send and receive (exchange) photons. The photons are said to "carry” the force
between charged particles. Likewise, attraction between two quarks in an atomic
nucleus occurs when two quarks send and recelve gluons. Similarly, the W, W and £
are the bosons that are the camers of weak nuclear force and gravitons are the carriers
of gravitational forea. The Higgs boson (5 a special particle discoverad in 2012 at large
hadron collider at CERNM. It is associated with the Higg's field that permeates all of the
space, lis crucial role is that it provides ex planation for how the other particles get mass
by interacting withit.

The parliclkes that interact strongly with Higg's field get more mass such as carmiers of
eleciroweak interaction La., W, W and Z bosons whereas the particles like photons do
notinteract with Higg's field and hence, their resi mass is considered zero. Higgs boson
has & mass of around 125 piga-electron-valts (Ge\) and decays rapidly into others
paricdes. Hera are some key facts:
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1. The Higzs boson gets its rnass from its interacbions with its associated Higg's fisld.

12,8 CONSERVATION LAWS

All nudear process such as nuclear reactions Far Your Informatien

and nuclear decays obey conservation laws

Hadrons
Ruch s Mesens. .0, pions, keons
1. conservation of energy, momentum baryons, e.g. prolons, neutrons, omega,
and charge. Il includes the nucleon sRgmia and lambda paricies
number (M) and charge number (Z). Non-hadrons
5 haryon number ﬁ:;lnm:' including alectrans, muon,
= leptonnumbear photons. gravibons
12,9 THE ASYMMETRY OF MATTER AND ANTIMATTER IN

THE UNIVERSE

Many observations show that there is the asymmetry between matter and antimatter,
Thizis the most remarkable features of our universe. Anumber of hypothesis are existed
which show that the universe consists almost entirely of matter rather than antimatter.
€.4., the unlverse (s assumed o ba compoased up 5% of ordinary matter (electrons,
protons and neutrons), 72% of hydrogen atoms and 24% of helium atoms, there are no
any contnbution of antihydrogen or anti-helium atoms in the composition of the
universe,

The experimental resulis explain that the matier and antimatter asymmetry is indeed
due ta tha violation of conservation of baryan numbser. e, thera is imbalance number af
baryons and its anti-baryons. Now if the parficle-antiparticle symmeiry is also viclated
then there will be a machanism for making more quarks than antiquarks, more leptons
than antileptons and eventually more matter than antimatier. Henca, itis concluded that
the problem asymmetry of matter and antimatier is shill mystery.

12.10 MOST OF THE MATTER IN THE OBSERVABLE UNIVERSE
ISPLASMA

Our univarss is more vast than our thinking, because we still know about its 5% part but
we still do pot know about its remaining 95% part. For example, our universa consists of
aboul 27% of unknown matter called dark matter and about 68% a myslencus
antigravity material known as dark energy. By adding 27% and 68% we have 95%._ It
means 95% universe is out of our thinking, i.e., we know nothing about 95% of the
univarse.

Oncthe other hand, the 5% of the universe that we know about i, consists of 68%
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of hydrogen, 27% of helium and 5% of ordinary matter, Whena hydrogen and helivm are
almost in the plasma state, Thersfore, thesa figures indicate that 95% of the 5% of the
observable universe is the plasma state, while the remaining 5% is in the form of matbar,
Hence, itis concluded that most of the matier in the observable universeis plazma.

12.11 THETHEORIES ABOUT THE FORCES BETWEEN THE
MASSES OF PARTICLES

To explain the interactions between the masses of thae Eor Your Information
paricles through different mediators, we have the
fallowing two theories, the quanium field theory and
the string theory.

2,  The quantum field theory

According 1o this theory, each particle iz represented
by a field called quantum field and it is responsible to
tranamit a force from one paricle o another by a
mediator. Forexample, letl a positive charged pariicles
produces an electric field in space around i, This
charged particle exerts an atiractive force on a nearby |
negatve charged paricle through its field, Moreowver,
tha field can also carry enargy and momentum from |
one particle to ancther. Where the energy and;
mamentum of all figlds are quantized. The quanta that )
exchange momenlum and energy from one type of !
particle to another in fheir field are called 'ﬁeld:
particles, Thus, we can say lhat the inleracltions
between particles are described in terms of the
exchange of field parlicle or guanta which are all k
bosons. For example, the electromagnetic force is
mediated by photons called quania of the
electromagnatic field. Similarly, the strong nuclear d
force is mediated by field parlickes called gluons, the 8
weak force is mediated by the field particles called d
Bosons (W and Z) and the gravitational forces |5
mediated by field pariicles called gravitons.
2.  String Theory g P
String Theory is an advanced concept in
thearetical physics proposing that the fundamental
particles of the universe, instead of being point-like,
are actually tiny, vibrating strings. These sirings can e N
be open or closed loops, and their vibrations | L than 10" m
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determmine the properies of particles, including mass and force. Siring Thaory
framework, offering a potential thecry of everything, still remains unproved
axperimeantally, o e

12.12 THESTANDARD MODEL

The standard modelis the collection of theories * |
that describe the smallest experimentally
observed paricles of matter and inleraction
between energy and matier. Three calegories
of particles form the standard model as shown
in Fig. 12.8. Matter, which makes uponly 5% of
the universe is composed of quarks and
leptons, The lundamental bosong provide
three forces: electromagnetism, the strong
nuclear force and the weak nuclear force,

The Higg's boson discoverad in 2012 provides
an explanation for how the other padicles get
mass.

Figure 12.8: Elormentary paricles in the
shanctand midel

This model 15 still considered incomplete. Currently, it is unable to explain many
Imporiant features of the known universe such as: (i) gravity (i} dark matter (27% of
the universe (jiii) dark energy (3% ofthe universe},

L (mem)

! Multiple Choice Questions !i

12,1 Whigh one of the fallowing 1s the fundameantal particle:

{a) proton (b} neutron (c] elactron {d) meson
12.2 Tha first discovared anti-narticle |s!

(a)anti-proton  {b) antinewtrino (c) anti-Photon (d} antielectron
12.3 Which ocne of the following pair of pardicles creaies annihilation:

{a) proton=proton (b)) prolof=reeulron

1) neutron-photon (d} electron-positron

12.4 The strang nuclear force batwesn the lwo paricles is madialed by,

(a) gluons (b} photon (C] mesons (d} gravitons
12, 5Which one of the following forces inferacts between two padicles through pholons:
(&) stromg nuclear force (b yweak force

{0} electromagnetic force (d) gravitational force
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12.6° When aneuiron changes into 8 profon then wewill observe;

(a)p-decay (b)p -decay (c)y-decay  (d)e-decay

12,7 Baryonis lormed by combinalion of;
(a) 2 quark () 3 quark
(c) 4 quark (d)Aquark and an anti-quark

12.8  Which on= of ihe following forces has negligible effect between Ihe elementary
particles:
(a) strong nuclear force (b weak force
(c)gravitational force (d) electromagnetic force

128 Which particles are produced by sirong interacton:
(3] graviton {b]leptons (cyhadrons  (d)mesons

12.10 Astrong nuckear force exists between the nuclecns of;
[@lp-p ibin—n (eyp—n id) all ofthese

12.11 Which one of the following radiation/particles has the highest ionizaton power;
(a) (b} B fe) | (d)y

12.12 Which ana of the fallowlng radiation/particles has tha higheast panalrating powar
(a)c (b} B (e} i () y

12:13 Achangeoccursin atomic mamber of a nucleus but its mass number ramalns the
same by decay of
(a)o (B} (e)y (d]oandy

12,14 In a nucleus, @ neutron changes into a proton the atomic number changes by
one, he mass number will be

(a)decreased (b}increased (c)remain same (d) none of thase
12:15 The alectroweak theory was introduced by;

(a) Dirac (b} Einztein (clanderson  (d) Dr. Abdul Salam
12,16 The asymmetry of matier and antimatter iz due io imbslance number of;
(&) hadron (b hepton (chbaryon id) photons
1297 Which one of the following paricle is responsible for the mass of the fundamental
particla:
(a) quarks (b) antiquark () lepton (d) higgs boson
1218 Aprotonis composed of up and down quarks, the order of quarks ks:
(a)wdd (b} wdu (chuud (d) ded
12.19 Thenumberof guarks that composed of a neutron is:
([a)2 b3 (c)4 d)5
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12.1

12.2
12.3

12.4

12,6
12,6
127
12.8
12.8
12,10
12.11

12.12
12.13
12.14

12.15

12.1
12.2
12.3

12.4
12.5

|! Short Answer Questions !

What da different isotopes of a given element have in common? How are
they differant?

[dentify the element thal has 87 nuckeons and 50 neutrons.

What are the similarities and differences between tha strong nuclear force and
the electric forca?

Fillin the missing particle or nucleus:
wCB—=T+E + ¥

ﬂﬂu' — T4y

Why neutring must ba released in the positron emizsion?

Distinguish between fermicns and bosons,

How doas strong force hold the nucleus?

Canthere be pair production for pholons having enaergy 20 keVW'? Explain briefly,
What is the differancea batwean bala particle and electron?

How doa proton and & neutron corvert to each other?

Why does bela-decay have a conlinuous energy spectrum and alpha-decay
have a discrete energy spectrum?

Diffarentiate betwaan hadron and laptons with examplas.
Why electron-positron pair cannot decay inbo a single photon?

State the role of Higgs Bosen in the generation of mass in madern physics
theorias.

What are Mesons? Give example.

[i Constructed Response Questions il

Why doas Beta particle have continuous enargy spectrum?
Is meson or boson or fermion? Give reason.

Why does an alpha emitter emit alpha particles instead of four separate
necleons?

Which is mona anargatic Alpha decay or Bata decay? Justify yvour answer.

A nudleus undergoes Gamma decay, emitting Gamma ray photon with enengy
1.5 MaV, Calculate,

] frequency of Gamma ray
fii) wawve length of Gamma ray
CiiEy momentum of Gamma ray
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12,6 Why does the a-parlicles not make physical contact with the nucleus when
headed directly toward it?

|‘ 'E'nmprehen':iwe' Questions .|

12,1 What is meani by radicactivity? Compare the properties and behawvor of three
typas of radiations.

122 Elsborate the phenomenon of beta-positive decay and beta-negative decay with
axamples,

12,3  What iz the difference between matter and antimatter? Discuss reasons why our
universe is almost entirely composed of matier.

124  Explain the phenomenon of pair annihilation with an examiple, Explain the utility
of its principke in the medical field,

125 Explain the law of conservation of energy and momentum in electron-positron
pair annihilation.

126 Describa protons and neutrans in terms of their quark composition.

127  Describe four fundamental forces in nature.

12,8 Describathe classification of elementary particies.

@ Numerical Problems |

12,1 Uranium=238 is an algha emitter, In the process, iLis transmutated into a daughter
nucleus. What iz the mass number (A} and charge number [£) of the daughter
nucleus? What is its chemical symbol? (Ans: A-234, Z=80, Thonium)

12.2 Polonium “,Po is a beta minus emitter. What will be the mass number {A) and
charge number (Z) of the daughter nucleus? {Ans: A=218, Z=85)

12 3 Nitrogen "N bombarded by alpha particle results into |0, What is the product
particle in this nuclear reaction? (Ans; H proton)

12.4 Show that nucleon number (N) and charge number (£) are conservad in the
numerical guestion 12.3.

12.5 Determine the rest mass energy of electron in eV, Its rest mass is 0,0000555 u?
(Ane: 0.51 MeV)



