All classes equally use Trigonometric Formulas for their preparation. Practice these formulas by putting different values into them.
Trigonometric Formulas
Angles (In Degrees) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
Angles (In Radians) | 0 | π/6 | π/4 | π/3 | π/2 | π | 3π/2 | 2π |
sin | 0 | 1/2 | 1/√2 | √3/2 | 1 | 0 | -1 | 0 |
cos | 1 | √3/2 | 1/√2 | 1/2 | 0 | -1 | 0 | 1 |
tan | 0 | 1/√3 | 1 | √3 | ∞ | 0 | ∞ | 0 |
cot | ∞ | √3 | 1 | 1/√3 | 0 | ∞ | 0 | ∞ |
cosec | ∞ | 2 | √2 | 2/√3 | 1 | ∞ | -1 | ∞ |
sec | 1 | 2/√3 | √2 | 2 | ∞ | -1 | ∞ | 1 |
Reciprocal Identities
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- cot θ = 1/tan θ
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
Inverse Trigonometry Formulas
- sin-1 (–α) = – sin-1 α
- cos-1 (–α) = π – cos-1 α = cos-1 α
- tan-1 (–α) = – tan-1 α
- cosec-1 (–α) = – cosec-1 α
- sec-1 (–α) = π – sec-1 α = sec-1 α
- cot-1 (–α) = π – cot-1 α = -cot-1α
Cofunction Formulas
- sin(90° − α) = cos α
- cos(90° − α) = sin α
- tan(90° − α) = cot α
- cot(90° − α) = tan α
- sec(90° − α) = cosec α
- cosec(90° − α) = sec α
Sum and Difference Formulas
- sin(α+β) = sinαcosβ + cosαsinβ
- sin(α-β) = sinαcosβ – cosαsinβ
- cos(α+β) = cosαcosβ – sinαsinβ
- cos(α-β) = cosαcosβ + sinαsinβ
- tan(α+β) = (tanα + tanβ) / (1 – tanαtanβ)
- tan(α+β) = (tanα – tanβ) / (1 + tanαtanβ)
Half-Angle Formulas
sinα/2 = ±√(1-cosα)/2
cosα/2 = ±√(1+cosα)/2
tanα/2 = ±√(1-cosα)/(1+cosα)
Double Angle Formulas
- sin2α = 2sinαcosα
- cos2α = cos2α – sin2α = 2cos2α – 1 = 1 – 2sin2α
- tan2α = 2tanα / (1 – tan2α)
Triple Angle Formulas
- sin3α = 3sinα – 4sin3α
- cos3α = 4cos3α – 3cosα
- tan3α = 3tanα – tan3α / (1- 3tan2α)
Product to Sum Formulas
- sinα + cosβ = 2 sin(α + β)/2 . cos (α – β)/2
- sinα – cosβ = 2 cos(α + β)/2 . sin (α – β)/2
- cosα + cosβ = 2 cos(α + β)/2 . cos (α – β)/2
- cosα – cosβ = -2 sin(α + β)/2 . sin (α – β)/2
Sum to Product Formulas
- 2sinα . cosβ = sin(α + β) + sin(α – β)
- 2sinα . sinβ = cos(α – β) – cos(α + β)
- 2cosα . cosβ = cos(α + β) + cos(α – β)
Please add chapter 12 and 13 formulae
They will also be added there in a short while.
Thanks for attention.